
Copyright 2010 by Pearson Education
1

Algorithms
!  algorithm: A list of steps for solving a problem.

!  Example algorithm: "Bake sugar cookies"
!  Mix the dry ingredients.
!  Cream the butter and sugar.
!  Beat in the eggs.
!  Stir in the dry ingredients.
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  Place the cookies into the oven.
!  Allow the cookies to bake.
!  Spread frosting and sprinkles onto the cookies.
!  ...

Copyright 2010 by Pearson Education
2

Problems with algorithms
!  lack of structure: Many steps; tough to follow.

!  redundancy: Consider making a double batch...
!  Mix the dry ingredients.
!  Cream the butter and sugar.
!  Beat in the eggs.
!  Stir in the dry ingredients.
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  Place the first batch of cookies into the oven.
!  Allow the cookies to bake.
!  Set the timer for 10 minutes.
!  Place the second batch of cookies into the oven.
!  Allow the cookies to bake.
!  Mix ingredients for frosting.
!  Spread frosting and sprinkles onto the cookies.

Copyright 2010 by Pearson Education
3

Structured algorithms
!  structured algorithm: Split into coherent tasks.

1 Make the batter.
!  Mix the dry ingredients.
!  Cream the butter and sugar.
!  Beat in the eggs.
!  Stir in the dry ingredients.

2 Bake the cookies.
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  Place the cookies into the oven.
!  Allow the cookies to bake.

3 Decorate the cookies.
!  Mix the ingredients for the frosting.
!  Spread frosting and sprinkles onto the cookies.

...

Copyright 2010 by Pearson Education
4

Removing redundancy
!  A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Make the cookie batter.
!  Mix the dry ingredients.
!  ...

2a Bake the cookies (first batch).
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  ...

2b Bake the cookies (second batch).
!  Repeat Step 2a

3 Decorate the cookies.
!  ...

Copyright 2010 by Pearson Education
5

Functions
!  function: A named group of statements.

!  denotes the structure of a program
!  eliminates redundancy by code reuse

!  procedural decomposition:
dividing a problem into sub-problems

!  Writing a function is like
adding a new command to Python.

program
function A

!  statement
!  statement
!  statement

function B
!  statement
!  statement

function C
!  statement
!  statement
!  statement

Copyright 2010 by Pearson Education
7

Using functions
1. Design (think about) the algorithm.

!  Look at the structure, and which commands are repeated.
!  Decide what are the important overall tasks.

2. Define (write down) the functions.
!  Arrange statements into groups and give each group a name.

3. Call (run) the functions.

Copyright 2010 by Pearson Education
8

Gives your function a name so it can be run later

!  Syntax:

def name():
 statement # Notice how these
 statement # lines are indented.
 ... # This is how Python knows
 statement # where a function definition  
 # begins and ends.

!  Example:

def printWarning():
 print("This product causes cancer")
 print("in lab rats and humans.")

Defining a function

Copyright 2010 by Pearson Education
9

Calling a function
Executes (runs) the function's code

!  Syntax:

 name()

!  You can call the same function many times if you like.

!  Example:

 printWarning()

!  Output:

 This product causes cancer
 in lab rats and humans.

Copyright 2010 by Pearson Education
10

Program with functions
This is a function to print the lyrics to my favorite song.
def rap():
 print("Now this is the story all about how")
 print("My life got flipped turned upside-down")

A function for the "main" program.
def main():
 rap() # Call (run) the rap function.
 print() # Print a blank line.
 rap() # Call the rap function again.

main() # Call main() to start the program.

Output:

Now this is the story all about how
My life got flipped turned upside-down

Now this is the story all about how
My life got flipped turned upside-down

Copyright 2010 by Pearson Education
12

!  When a function is called, the program's execution
!  "jumps" into that method, executing its statements, then
!  "jumps" back to the point where the method was called.

Control flow

1 def rap():
2 print("Now this is the story all about how")
3 print("My life got flipped turned upside-down")

4 def main():
5 rap() # Call (run) the rap function.
6 print() # Print a blank line.
7 rap() # Call the rap function again.

8 main() # Call main() to start the program.

Copyright 2010 by Pearson Education
13

Control flow
1 def rap():
2 print("Now this is the story all about how")
3 print("My life got flipped turned upside-down")

4 def main():
5 rap() # Call (run) the rap function.
6 print() # Print a blank line.
7 rap() # Call the rap function again.

8 main() # Call main() to start the program.

! Program starts on line 8. Sees a function call…
! Calls main(), jumps to line 5. Sees a function call…

! Calls rap(), jumps to line 2. Runs statements 2 and 3.
! Jumps back to after line 5. Runs statement 6. Sees a call…

! Calls rap(), jumps to line 2. Runs statements 2 and 3.
! Jumps back after line 7 [end of main()]

! Jumps back to after line 8 [end of entire program]

Copyright 2010 by Pearson Education
14

When to use functions
!  Place statements into a function if:

!  The statements are related structurally, and/or
!  The statements are repeated.

Copyright 2010 by Pearson Education
15

Remember the cookies…
!  Unstructured algorithm for a double batch:

!  Mix the dry ingredients.
!  Cream the butter and sugar.
!  Beat in the eggs.
!  Stir in the dry ingredients.
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  Place the first batch of cookies into the oven.
!  Allow the cookies to bake.
!  Set the timer for 10 minutes.
!  Place the second batch of cookies into the oven.
!  Allow the cookies to bake.
!  Mix ingredients for frosting.
!  Spread frosting and sprinkles onto the cookies.

Copyright 2010 by Pearson Education
16

Remember the cookies…
!  Unstructured algorithm for a double batch:

!  Mix the dry ingredients.
!  Cream the butter and sugar.
!  Beat in the eggs.
!  Stir in the dry ingredients.
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  Place the first batch of cookies into the oven.
!  Allow the cookies to bake.
!  Set the timer for 10 minutes.
!  Place the second batch of cookies into the oven.
!  Allow the cookies to bake.
!  Mix ingredients for frosting.
!  Spread frosting and sprinkles onto the cookies.

Copyright 2010 by Pearson Education
17

Structured algorithms
!  structured algorithm: Split into coherent tasks.

1 Make the batter.
!  Mix the dry ingredients.
!  Cream the butter and sugar.
!  Beat in the eggs.
!  Stir in the dry ingredients.

2 Bake the cookies.
!  Set the oven temperature.
!  Set the timer for 10 minutes.
!  Place the first batch of cookies into the oven.
!  Allow the cookies to bake.
!  Set the timer for 10 minutes.
!  Place the second batch of cookies into the oven.
!  Allow the cookies to bake.

...

3 Decorate the cookies.
! Mix the ingredients for the
frosting.
! Spread frosting and sprinkles
onto the cookies.

Ideas for
functions:
!  Make one

function for
each of steps 1,
2, and 3.

!  Make one
function for the
red/blue text.

