
C++	Functions	
	
Python	 C++	
def function_name(var1, var2, ...)
 statement
 statement
 …more statements…	

type function_name(type var1, type var2, ...)
{
 statement
 statement
 …more statements…
}	

	
Comparison:	

• C++	forces	the	programmer	to	declare	the	data	type	of	each	parameter	to	a	function,	along	with	the	data	type	of	the	return	
value.			

o If	the	function	takes	no	arguments,	the	parentheses	can	be	left	empty	(like	Python).	
o If	the	function	does	not	return	anything,	you	must	use	the	return	type	of	void.	

• The	return	keyword	in	C++	works	just	like	in	Python.		When	returning	a	value	from	a	C++	function,	you	must	make	sure	
the	value	being	returned	has	the	same	data	type	as	the	declared	return	type.	

	
Function	prototypes	
	
The	C++	compiler	will	check	that	every	time	you	call	a	function	in	your	code,	the	function	being	called	has	been	defined	correctly.		
However,	because	the	compiler	reads	your	source	code	from	top	to	bottom,	if	a	function	call	earlier	in	your	code	references	a	
function	that	is	defined	later,	the	compiler	will	give	you	an	error	message	about	an	undefined	function.		To	fix	this	problem,	use	a	
function	prototype:	
	
int f(int a, int b); // function prototype line

int main() {
 f(3, 6); // without the above prototype, the compiler would flag this

// line as an error, saying the function f is not defined.
}

int f(int a, int b) {
 cout << “This is function f. The sum of my arguments is ” << a + b << endl;
}

A	function	prototype	gives	C++	enough	information	about	the	function	---	its	name,	parameter	types,	and	return	type	---	for	the	C++	
compiler	to	do	its	type-checking	as	it	is	compiling	your	program.				
	
Function	overloading	
	
Because	C++	forces	you	to	declare	the	types	of	your	parameters	to	the	functions	you	write,	C++	allows	you	to	define	multiple	
functions	with	the	same	name,	but	different	numbers	of	parameters	or	different	parameter	types.		C++	will	figure	out	which	one	to	
call	based	on	the	arguments	that	are	passed	to	the	function	when	it	is	called.		These	three	functions	can	coexist	just	fine:	
	
void g(int x) {
 cout << “In g, x is an integer:” << x << endl;
}

void g(string x) {
 cout << “In g, x is an string:” << x << endl;
}

void g() {
 cout << “In g, no arguments!” << endl;
}

