
Branching/Conditionals	(If	statements)	
	
The	differences	between	Python	and	C++	conditional	statements	are	only	syntactical.		The	semantics	---	how	they	work	-
--	is	exactly	the	same.		
	
Python	 C++	
if test:
 statement
 statement
 …more statements…	

if (test)
{
 statement
 statement
 …more statements…
}	

if test:
 statement
 statement
 …more statements…
else:
 statement
 statement
 …more statements…
	

if (test)
{
 statement
 statement
 …more statements…
}
else
{
 statement
 statement
 …more statements…
}	

if test1:
 statement
 statement
 …more statements…
elif test2:
 statement
 statement
 …more statements…
…more elif tests…
else:
 statement
 statement
 …more statements…
	

if (test1)
{
 statement
 statement
 …more statements…
}
else if (test2)
{
 statement
 statement
 …more statements…
}
…more else if tests…
else
{
 statement
 statement
 …more statements…
}	

• Indentation	implies	which	statements	form	the	
body	of	the	conditional.	

• Must	use	a	colon	after	each	test.	

• Curly	braces	imply	which	statements	form	the	
body.		If	there	is	only	one	statement	inside	the	
body,	the	braces	can	be	omitted.	

• Must	surround	each	test	with	parentheses.	
	
The	relational	operators	are	the	same	in	both	languages:	==	(equality),	!=	(inequality),	<	(less	than),	<=	(less	than	or	
equal	to),	>	(greater	than),	>=	(greater	than	or	equal	to).	
	
The	logical	operators	are	syntactically	different	(though	they	work	identically	in	both	languages):	
	 Python:		 and or not	

C++:		 && || !	

Switch	statement	(only	in	C++)	
	
A	common	use	of	an	if-else if…else	statement	is	to	compare	a	variable	against	a	sequence	of	constants	with	an	
equality	test.		For	instance:	
	
char grade;
cin >> grade;
if (grade == ‘A’) {

cout << “Your work is excellent!” << endl;
} else if (grade == ‘B’) {

cout << “Your work is good!” << endl;
} else if (grade == ‘C’) {

cout << “Your work is average.” << endl;
} else if (grade == ‘D’) {

cout << “Your work is below average!” << endl;
} else if (grade == ‘F’) {

cout << “You are failing!” << endl;
} else {

cout << “You typed an invalid letter grade.” << endl;
}
	
This	could	be	replaced	with:	
	
char grade;
cin >> grade;
switch (grade)
{

case ‘A’:
cout << “Your work is excellent!” << endl;
break;

 case ‘B’:
 cout << “Your work is good!” << endl;

break;
 case ‘C’:
 cout << “Your work is average!” << endl;

break;
 case ‘D’:
 cout << “Your work is below average!” << endl;

break;
 case ‘F’:

cout << “You are failing!” << endl;
break;

 default:
 cout << “You typed an invalid letter grade.” << endl;

break;
}
	
A	switch	statement	can	only	be	used	if	the	variable	in	question	is	an	int	or	a	char,	and	the	variable	can	only	be	
compared	against	a	single	constant	at	a	time,	and	only	for	an	equality	test.		Notice	the	use	of	the	break	statement	in	
each	case.		When	using	switch,	as	soon	as	the	first	case	that	matches	the	variable	is	found,	all	of	the	case	blocks	
following	the	matching	one	are	executed.		To	avoid	this	behavior,	use	a	break	statement	inside	each	case	block.		This	
behavior	can	be	used	to	allow	multiple	values	to	trigger	execution	of	a	single	case	block	(see	the	Zybook	section	3.5	for	
an	example).		
	

