
C++	Vectors	
	
Vectors	are	the	C++	data	type	that	most	closely	aligns	with	Python’s	list	data	type.		Some	common	list	operations	in	
Python	are	not	directly	available	for	vectors,	such	as	printing	an	entire	vector	all	at	once,	and	using	slices	or	
negative	indices.		Python	lists	always	do	bounds-checking,	meaning	you	can	never	assign	to	a	list	index	that	doesn’t	
exist.		C++	will	let	you	assign	to	a	vector	index	that	doesn’t	exist	(which	you	should	avoid	doing!).	
	
Vector	operations	(type	stands	for	a	data	type,	like	int	or	double):
	
Create	an	empty	vector	 	 	 	 	 vector<type> v;
Create	a	vector	of	a	certain	size	 vector<type> v(int size);
Create	a	vector	of	a	certain	size,	filled	with	a	certain	
item	

vector<type> v(int size, type value);

Initialize	a	vector		 vector<type> v = {val1, val2, val3...};
	 	
Access	or	change	an	item	
	
			Use	v.at(int position)	instead	of	brackets	
						if	you	want	bounds-checking.	

Use	brackets	just	like	Python	lists	or	C++	arrays	
wherever	you’d	use	a	regular	variable	or	literal	(i.e.,	
with	cin,	cout,	assignment,	passing	arguments,	
returning	values,	etc).		No	Python-like	slicing	operations	
or	negative	indices.	

Re-assign	entire	vector	 v = v2;		(resizes	v	to	have	the	same	length	as	v2,	then	
copies	all	of	v2’s	items	into	v),	or	
v = {val1, val2, val3...};	

Return	first	item	in	vector	 v.front()
Return	last	item	in	vector	 v.back()
Resize	a	vector	 v.resize(int newsize);
Resize	a	vector	and	fill	with	an	item	 v.resize(int newsize, type item);
Return	a	vector’s	current	size	 v.size()
Test	whether	a	vector	is	empty	 v.empty()
Insert	an	item	at	the	end	(increases	size	by	1)	 v.push_back(type item);
Insert	an	item	at	position	n	in	the	vector,	shifting	items	
in	positions	n	to	v.size() – 1	to	the	right.	

v.insert(v.begin() + n, type item);

Insert	an	item	at	a	position	calculated	from	the	end	of	
the	vector.	

v.insert(v.end() - n, type item);	

Remove	an	item	at	the	end	(decreases	size	by	1)	 v.pop_back();
Remove	an	item	from	position	n,	shifting	items	in	
positions	n + 1	to	v.size() – 1	to	the	left.	

v.erase(v.begin() + n); [can	use	v.end()	as	
well	to	erase	from	end]

Clear	the	vector	(remove	all	items	and	resize	to	0)	 v.clear();
	
Iterating	through	a	vector	by	using	indices:	
	
vector<int> vec = {1, 1, 2, 3, 5, 8};

for (int x = 0; x < v.size(); x++)
{
 cout << vec[x] << endl;
}

Iterating	through	a	vector	without	using	indices:	

vector<int> vec = {1, 1, 2, 3, 5, 8};

for (int item : vec)
{
 cout << item << endl;
}	

	

