
CS	142	Loop	Problems	
	
1. Write	a	program	that	approximates	the	value	of	pi	(3.14159…)	using	the	formula	

	
π	=	4	–	(4/3)	+	(4/5)	–	(4/7)	+	(4/9)	–	(4/11)	+	…	
	
Ask	the	user	how	many	terms	of	the	formula	they	want	to	use	to	approximate	pi.		For	instance,	if	they	enter	6,	you	would	
use	the	six	terms	above,	up	to	(4/11).		Then	use	a	for	loop	to	calculate	the	approximate	value	and	print	it.	
	
By	default,	C++	rounds	all	floating-point	numbers,	when	printed,	to	6	significant	figures,	even	if	in	memory	they	are	
stored	with	higher	precision.		To	print	a	different	number	of	decimal	places,	use	this	code:	
	
double p = 8.0/3.0;
cout << p << endl; // prints 2.66667
cout << std::fixed << setprecision(2) << p << endl; // prints 2.67
cout << std::fixed << setprecision(15) << p << endl; // prints 2.666666666666667
	

2. It	is	possible	for	a	right	triangle	to	have	sides	that	are	all	integers	(whole	numbers).		A	set	of	three	integer	values	for	the	
sides	of	a	right	triangle	is	called	a	Pythagorean	triple,	such	as	(3,	4,	5).		These	three	sides	must	satisfy	the	relationship	
that	the	square	of	the	hypotenuse	is	equal	to	the	sum	of	the	squares	of	the	other	two	remaining	sides	of	the	triangle.		Find	
all	Pythagorean	triples	for	side1,	side2,	and	hypotenuse	all	no	larger	than	500.		Use	a	triple-nested	for	loop	that	tries	all	
possibilities	and	prints	only	the	ones	that	are	Pythagorean	triples.		This	is	an	example	of	brute-force	computation,	a	
technique	where	you	just	try	all	the	possibilities	until	something	works.		For	many	problems,	there	are	better	algorithmic	
techniques	than	brute-force,	but	a	brute-force	algorithm	is	often	very	simple	to	write	code	for.	
	
Use	manual	multiplication	to	calculate	the	square	of	a	number	(there	is	a	function	to	compute	exponents,	but	it	can	be	
tricky	to	use	in	this	case	because	it	always	returns	a	floating	point	number).		Do	not	use	the	square	root	function	either.	
	

3. Write	a	program	that	lets	the	user	type	in	a	number	from	the	keyboard	and	determines	if	the	number	is	prime	or	not.	
	

4. Write	a	program	that	lets	the	user	type	in	a	positive	integer	from	the	keyboard.		The	program	should	print	out	the	
pseudo-Roman	numeral	equivalent	of	the	number.		I	say	“pseudo”	because	we	will	simplify	Roman	numerals	a	bit	by	
getting	rid	of	the	subtraction	rules	for	Roman	numerals.		For	example,	normally	9	is	written	as	IX	=	10	–	1,	but	your	
program	can	print	VIIII.	
	
In	Roman	numerals,	M	=	1000,	D	=	500,	C	=	100,	L	=	50,	X	=	10,	V	=	5,	and	I	=	1.			
	
Hint:	Use	a	loop	that	runs	until	the	user’s	number	becomes	equal	to	zero.		Inside	the	loop,	write	if	statements	that	test	
how	big	the	number	is.		If	the	number	is	bigger	than	or	equal	to	one	of	the	exact	Roman	numerals	above,	print	that	
numeral,	subtract	the	value	from	the	user’s	number,	and	loop	again.	
	
Challenge:	make	this	print	out	“true”	Roman	numerals;	e.g.,	for	9	it	should	print	IX,	not	VIIII.		Try	to	find	an	algorithm	for	
this	on	your	own,	but	I	have	a	hint	if	you	really	want	it.	
	

5. Let	the	user	enter	a	positive	integer	from	the	keyboard,	called	n.		Print	a	triangle,	made	of	asterisks,	with	base	and	height	
of	n	like	this	(for	n	=	4):	
	
*
* *
* * *
* * * *
	
Then	amend	your	program	so	it	prints	the	other	three	variations	of	this	triangle,	with	the	right-angle	in	the	other	corners:	

* * * * * * * * *
* * * * * * * *
* * * * * * *
* * * * * *
	
	

