Running time of algorithms

How can we measure the running time of algorithms?

- Idea: Use a stopwatch.
- What if we run the algorithm on a different computer?
- What if we code the algorithm in a different programming language?
- Timing the algorithm doesn't (directly) tell us how it will perform in other cases besides the ones we test it on.

How can we measure the running time of algorithms?

- Idea: Count the number of "basic operations" in an algorithm.
- "Basic operations" are things the computer can do "in a single step," like
- Printing a single value (number or string)
- Comparing two values
- (simple) math, like adding, multiplying, powers
- Assigning a variable a value
- How many basic operations are done in this algorithm?
- Only count printing as a basic operation.
\# assume vec is a vector of three ints
for (int $x=0 ; x<3 ; x++$) scout << vec[x];
\# assume vec2 is a vector of six ints
for (int $x=0 ; x<6 ; x++$)
scout << vec[x];
- How many basic operations are done in this algorithm?
- Only count printing as a basic operation.
\# assume vec is a vector of ints
for (int $x=0 ; x<v e c . s i z e() ; x++)$ cout << vec[x];

If $\mathrm{n}=$ vec.size(), what is a general formula for how long this algorithm takes, in terms of n ?

- How many basic operations are done in this algorithm, in the worst possible case?
- Only count printing as a basic operation.
\# assume vec is a vector of ints
for (int $x=0 ; x<v e c . s i z e() ; x++)$
if (vec $[x]>10)$
cout << vec[x];

If $\mathrm{n}=\operatorname{len}(\mathrm{L})$, what is a general formula for how long this algorithm takes, in terms of n, in the worst case?

- Computer scientists often consider the running time for an algorithm in the worst case, since we know the algorithm will never be slower than that.
- Sometimes we also care about average running time.
- We express the running time of an algorithm as a function in terms of " n," which represents the size of the input to the algorithm.
- For an algorithm that processes a list, n is the length of the list.
/* Assume for both algorithms, var and n are already defined as positive integers. Basic ops are printing and adding. */
// algorithm A
var = var + n;
cout << var << endl;
// algorithm B
for (int $x=0 ; x<n ; x++$)
var++;
cout << var << endl;

Time (T)

$$
\text { Alg } B: T(n)=n+1
$$

$$
A \lg A: T(n)=2
$$

$$
n \stackrel{i}{=} 1
$$

Input size (n)

Suppose we count comparisons:

double largest = vec[0];
for (int $x=0 ; x<v e c . s i z e() ; ~ x++)$
\{
if (vec[x] > largest) \leftarrow how many times?
largest = vec[x]
\}

Suppose we count comparisons:
double largest = -99999;
for (int $x=0 ; x<o p e n . s i z e() ; ~ x++)$
\{
for (int $y=0 ; y<c l o s e . s i z e() ; y++)$
\{

$$
\begin{gathered}
\text { if (close[y] - open[x] > largest) } \\
\text { largest = close[y] - open[x] }
\end{gathered}
$$

\}
\}

Suppose we count comparisons:
double largest = -99999;
for (int $x=0 ; x<o p e n . s i z e() ; ~ x++)$
\{
for (int $y=x ; y<c l o s e . s i z e() ; ~ y++)$
\{

$$
\begin{gathered}
\text { if (close[y] - open[x] > largest) } \\
\text { largest = close[y] - open[x] }
\end{gathered}
$$

\}
\}

- We group running times together based on how they grow as n gets really big.
- If the running time stays exactly the same as n gets big (n has no effect on the algorithm's speed), we say the running time is constant.
- If the running time grows proportionally to n, we say the running time is linear.
- If the input size doubles, the running time roughly doubles.
- If the input size triples, the running time roughly triples.
\# algorithm A
var = var + n;
cout << var << endl;

What class does algorithm A fall into? [constant or linear]
\# algorithm B
for (int $x=0 ; x<n ; x++$)
var++;
cout << var << endl;

What class does algorithm B fall into? [constant or linear]

Which is "better?"

- In general, we prefer algorithms that run faster.
- That is, as the algorithm's input size grows, the time required to run the algorithm should grow as slowly as possible.
- Therefore, an algorithm that runs in constant time is "generally" preferred over a linear-time algorithm.

Time (T)

\# algorithm C: \# assume L has n ints in it
for (int $x=0 ; x<$ vec.size(); x++) cout << vec[x];
\# algorithm D:
\# assume vec has n ints in it for (int $x=0 ; x<$ vec.size(); x++) if (vec[x] > 10) cout << vec[x];

Time (T)

Classes have special names, which use big-O notation.

Constant time algorithm: O(1) Read as "big-oh of 1" or "oh of 1"

Linear time algorithm: O(n) Read as "big oh of n " or "oh of n "

These classes give us a rough estimate of how fast an algorithm runs, without worrying about details.

- How many basic operations are done in this algorithm?
- Only count printing as a basic operation.
\# assume M is a n by n matrix of numbers
for (int $x=$
for col in range(0, n): print(M[row] [col])

What is a general formula for how long this algorithm takes, in terms of n ?

- Algorithm which doesn't get slower as input size increases is a constant-time algorithm.
- Algorithm whose running time grows proportionally to input size is a linear-time algorithm.
- Algorithm whose running time grows proportionally to the square of the input size is a quadratic-time algorithm.
- O(n^{2})

Watch Phil Tear A Phone Book in Half

- If a list is sorted, you can use the binary search algorithm to find the position of an element in the list.
- Takes logarithmic time.
- If a list is not sorted, you can't use binary search; you have to use sequential search.
- Takes linear time.
- Some problems have algorithms that run even more slowly than quadratic time.
- Cubic time (n^{3}), higher polynomials, ...
- Exponential time (2^{n}) is even slower!
- In some situations, we depend on the fact that we don't have fast algorithms to solve problems.
- Usually security situations involving breaking codes.

Time (T)

exponential

quadratic
logarithmic
constant

Input size (n)

One million "basic" operations per second.

| | logarithmic | linear | quadratic | exponential |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n=10$ | | | | |
| $n=20$ | | | | |
| $n=30$ | | | | |
| $n=50$ | | | | |
| $n=100$ | | | | |
| $n=1,000$ | | | | |
| $n=10,000$ | | | | |
| $n=100,000$ | | | | |
| $n=1,000,000$ | | | | |

One million "basic" operations per second.

| | logarithmic | linear | quadratic | exponential |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $n=10$ | 0.0033 ms | | | |
| $\mathrm{n}=20$ | 0.0043 ms | | | |
| $\mathrm{n}=30$ | 0.0049 ms | | | |
| $\mathrm{n}=50$ | 0.0056 ms | | | |
| $\mathrm{n}=100$ | 0.0066 ms | | | |
| $\mathrm{n}=1,000$ | 0.0099 ms | | | |
| $\mathrm{n}=10,000$ | 0.0133 ms | | | |
| $\mathrm{n}=100,000$ | 0.0166 ms | | | |
| $\mathrm{n}=1,000,000$ | 0.0199 ms | | | |

One million "basic" operations per second.

| | logarithmic | linear | quadratic | exponential |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{n}=10$ | 0.0033 ms | 0.01 ms | | |
| $\mathrm{n}=20$ | 0.0043 ms | 0.02 ms | | |
| $\mathrm{n}=30$ | 0.0049 ms | 0.03 ms | | |
| $\mathrm{n}=50$ | 0.0056 ms | 0.05 ms | | |
| $\mathrm{n}=100$ | 0.0066 ms | 0.1 ms | | |
| $\mathrm{n}=1,000$ | 0.0099 ms | 1 ms | | |
| $\mathrm{n}=10,000$ | 0.0133 ms | 10 ms | | |
| $\mathrm{n}=100,000$ | 0.0166 ms | 0.1 sec | | |
| $\mathrm{n}=1,000,000$ | 0.0199 ms | 1 sec | | |

One million "basic" operations per second.

	logarithmic	linear	quadratic	exponential
$\mathrm{n}=10$	0.0033 ms	0.01 ms	0.1 ms	
$\mathrm{n}=20$	0.0043 ms	0.02 ms	0.4 ms	
$\mathrm{n}=30$	0.0049 ms	0.03 ms	0.9 ms	
$\mathrm{n}=50$	0.0056 ms	0.05 ms	2.5 ms	
$\mathrm{n}=100$	0.0066 ms	0.1 ms	0.01 sec	
$\mathrm{n}=1,000$	0.0099 ms	1 ms	1 sec	
$\mathrm{n}=10,000$	0.0133 ms	10 ms	1.67 min	
$\mathrm{n}=100,000$	0.0166 ms	0.1 sec	2.77 hours	
$\mathrm{n}=1,000,000$	0.0199 ms	1 sec	11.57 days	

One million "basic" operations per second.

	logarithmic	linear	quadratic	exponential
$\mathrm{n}=10$	0.0033 ms	0.01 ms	0.1 ms	1.024 ms
$\mathrm{n}=20$	0.0043 ms	0.02 ms	0.4 ms	
$\mathrm{n}=30$	0.0049 ms	0.03 ms	0.9 ms	
$\mathrm{n}=50$	0.0056 ms	0.05 ms	2.5 ms	
$\mathrm{n}=100$	0.0066 ms	0.1 ms	0.01 sec	
$\mathrm{n}=1,000$	0.0099 ms	1 ms	1 sec	
$\mathrm{n}=10,000$	0.0133 ms	10 ms	1.67 min	
$\mathrm{n}=100,000$	0.0166 ms	0.1 sec	2.77 hours	
$\mathrm{n}=1,000,000$	0.0199 ms	1 sec	11.57 days	

One million "basic" operations per second.

	logarithmic	linear	quadratic	exponential
$\mathrm{n}=10$	0.0033 ms	0.01 ms	0.1 ms	1.024 ms
$\mathrm{n}=20$	0.0043 ms	0.02 ms	0.4 ms	1.049 sec
$\mathrm{n}=30$	0.0049 ms	0.03 ms	0.9 ms	
$\mathrm{n}=50$	0.0056 ms	0.05 ms	2.5 ms	
$\mathrm{n}=100$	0.0066 ms	0.1 ms	0.01 sec	
$\mathrm{n}=1,000$	0.0099 ms	1 ms	1 sec	
$\mathrm{n}=10,000$	0.0133 ms	10 ms	1.67 min	
$\mathrm{n}=100,000$	0.0166 ms	0.1 sec	2.77 hours	
$\mathrm{n}=1,000,000$	0.0199 ms	1 sec	11.57 days	

One million "basic" operations per second.

	logarithmic	linear	quadratic	exponential
$\mathrm{n}=10$	0.0033 ms	0.01 ms	0.1 ms	1.024 ms
$\mathrm{n}=20$	0.0043 ms	0.02 ms	0.4 ms	1.049 sec
$\mathrm{n}=30$	0.0049 ms	0.03 ms	0.9 ms	17.9 min
$\mathrm{n}=50$	0.0056 ms	0.05 ms	2.5 ms	
$\mathrm{n}=100$	0.0066 ms	0.1 ms	0.01 sec	
$\mathrm{n}=1,000$	0.0099 ms	1 ms	1 sec	
$\mathrm{n}=10,000$	0.0133 ms	10 ms	1.67 min	
$\mathrm{n}=100,000$	0.0166 ms	0.1 sec	2.77 hours	
$\mathrm{n}=1,000,000$	0.0199 ms	1 sec	11.57 days	

One million "basic" operations per second.

	logarithmic	linear	quadratic	exponential
$\mathrm{n}=10$	0.0033 ms	0.01 ms	0.1 ms	1.024 ms
$\mathrm{n}=20$	0.0043 ms	0.02 ms	0.4 ms	1.049 sec
$\mathrm{n}=30$	0.0049 ms	0.03 ms	0.9 ms	17.9 min
$\mathrm{n}=50$	0.0056 ms	0.05 ms	2.5 ms	35.7 years
$\mathrm{n}=100$	0.0066 ms	0.1 ms	0.01 sec	
$\mathrm{n}=1,000$	0.0099 ms	1 ms	1 sec	
$\mathrm{n}=10,000$	0.0133 ms	10 ms	1.67 min	
$\mathrm{n}=100,000$	0.0166 ms	0.1 sec	2.77 hours	
$\mathrm{n}=1,000,000$	0.0199 ms	1 sec	11.57 days	

One million "basic" operations per second.

	logarithmic	linear	quadratic	exponential
$\mathrm{n}=10$	0.0033 ms	0.01 ms	0.1 ms	1.024 ms
$\mathrm{n}=20$	0.0043 ms	0.02 ms	0.4 ms	1.049 sec
$\mathrm{n}=30$	0.0049 ms	0.03 ms	0.9 ms	17.9 min
$\mathrm{n}=50$	0.0056 ms	0.05 ms	2.5 ms	35.7 years
$\mathrm{n}=100$	0.0066 ms	0.1 ms	0.01 sec	4×10^{16} years
$\mathrm{n}=1,000$	0.0099 ms	1 ms	1 sec	3×10^{287} years
$\mathrm{n}=10,000$	0.0133 ms	10 ms	1.67 min	----
$\mathrm{n}=100,000$	0.0166 ms	0.1 sec	2.77 hours	----
$\mathrm{n}=1,000,000$	0.0199 ms	1 sec	11.57 days	----

