
Running	time	of	algorithms



How	can	we	measure	the	running	time	
of	algorithms?

• Idea:	Use	a	stopwatch.
–What	if	we	run	the	algorithm	on	a	different	
computer?

–What	if	we	code	the	algorithm	in	a	different	
programming	language?

– Timing	the	algorithm	doesn’t	(directly)	tell	us	how	
it	will	perform	in	other	cases	besides	the	ones	we	
test	it	on.



How	can	we	measure	the	running	time	
of	algorithms?

• Idea:	Count	the	number	of	“basic	operations”	
in	an	algorithm.
– “Basic	operations”	are	things	the	computer	can	do	
“in	a	single	step,”	like
• Printing	a	single	value	(number	or	string)
• Comparing	two	values
• (simple)	math,	like	adding,	multiplying,	powers
• Assigning	a	variable	a	value



• How	many	basic	operations	are	done	in	this	
algorithm?
– Only	count	printing	as	a	basic	operation.

# assume vec is a vector of three ints
for (int x = 0; x < 3; x++)

cout << vec[x];

# assume vec2 is a vector of six ints
for (int x = 0; x < 6; x++)

cout << vec[x];



• How	many	basic	operations	are	done	in	this	
algorithm?
– Only	count	printing	as	a	basic	operation.

# assume vec is a vector of ints
for (int x = 0; x < vec.size(); x++)

cout << vec[x];

If	n	=	vec.size(),	what	is	a	general	formula	for	how	long	this	
algorithm	takes,	in	terms	of	n?



• How	many	basic	operations	are	done	in	this	
algorithm,	in	the	worst	possible	case?
– Only	count	printing	as	a	basic	operation.

# assume vec is a vector of ints
for (int x = 0; x < vec.size(); x++)

if (vec[x] > 10)
cout << vec[x];

If	n	=	len(L),	what	is	a	general	formula	for	how	long	this	
algorithm	takes,	in	terms	of	n,	in	the	worst	case?



• Computer	scientists	often	consider	the	
running	time	for	an	algorithm	in	the	worst	
case,	since	we	know	the	algorithm	will	never	
be	slower	than	that.
– Sometimes	we	also	care	about	average running	
time.

• We	express	the	running	time	of	an	algorithm	
as	a	function	in	terms	of	“n,”	which	represents	
the	size	of	the	input	to	the	algorithm.

• For	an	algorithm	that	processes	a	list,	n is	the	
length	of	the	list.



/* Assume for both algorithms, var and n are
already defined as positive integers.
Basic ops are printing and adding. */

// algorithm A
var = var + n;
cout << var << endl;

// algorithm B
for (int x = 0; x < n; x++)

var++;
cout << var << endl;



Time	(T)

Input	size	(n)

Alg A:	T(n)	=	2

Alg B:	T(n)	=	n	+	1	

n=1



Suppose we count comparisons:

double largest = vec[0];
for (int x = 0; x < vec.size(); x++)
{

if (vec[x] > largest)  ß how many times?
largest = vec[x]

}



Suppose we count comparisons:

double largest = -99999;
for (int x = 0; x < open.size(); x++)
{

for (int y = 0; y < close.size(); y++)
{
if (close[y] – open[x] > largest)

largest = close[y] – open[x]
}

}



Suppose we count comparisons:

double largest = -99999;
for (int x = 0; x < open.size(); x++)
{

for (int y = x; y < close.size(); y++)
{
if (close[y] – open[x] > largest)

largest = close[y] – open[x]
}

}



• We	group	running	times	together	based	on	
how	they	grow	as	n gets	really	big.

• If	the	running	time	stays	exactly	the	same	as	n	
gets	big	(n	has	no	effect	on	the	algorithm's	
speed),	we	say	the	running	time	is	constant.

• If	the	running	time	grows	proportionally	to	n,	
we	say	the	running	time	is	linear.
– If	the	input	size	doubles,	the	running	time	roughly	
doubles.

– If	the	input	size	triples,	the	running	time	roughly	
triples.



# algorithm A
var = var + n;
cout << var << endl;

What	class	does	algorithm	A	fall	into?		[constant	or	linear]

# algorithm B
for (int x = 0; x < n; x++)

var++;
cout << var << endl;

What	class	does	algorithm	B	fall	into?		[constant	or	linear]



Which	is	"better?"

• In	general,	we	prefer	algorithms	that	run	faster.
– That	is,	as	the	algorithm's	input	size	grows,	the	time	
required	to	run	the	algorithm	should	grow	as	slowly	
as	possible.

• Therefore,	an	algorithm	that	runs	in	constant	
time	is	"generally"	preferred	over	a	linear-time	
algorithm.



Time	(T)

Input	size	(n)

Alg A	(constant)

Alg B	(linear)

n=1



# algorithm C:
# assume L has n ints in it
for (int x = 0; x < vec.size(); x++)

cout << vec[x];

# algorithm D:
# assume vec has n ints in it
for (int x = 0; x < vec.size(); x++)

if (vec[x] > 10)
cout << vec[x];



Time	(T)

Input	size	(n)

Alg A	(constant)

Alg B	(linear)

n=1

Alg C	(linear)

Alg D	(linear)



Classes	have	special	names,	which	use	big-O	
notation.

Constant	time	algorithm:	O(1)
Read	as	“big-oh	of	1”	or	“oh	of	1”

Linear	time	algorithm:	O(n)
Read	as	“big	oh	of	n”	or	“oh	of	n”

These	classes	give	us	a	rough	estimate	of	how	
fast	an	algorithm	runs,	without	worrying	about	
details.



• How	many	basic	operations	are	done	in	this	
algorithm?
– Only	count	printing	as	a	basic	operation.

# assume M is a n by n matrix of numbers
for (int x = 

for col in range(0, n):
print(M[row][col])

What	is	a	general	formula	for	how	long	this	algorithm	
takes,	in	terms	of	n?



• Algorithm	which	doesn’t	get	slower	as	input	size	
increases	is	a	constant-time	algorithm.

• Algorithm	whose	running	time	grows	
proportionally	to	input	size	is	a	linear-time
algorithm.

• Algorithm	whose	running	time	grows	
proportionally	to	the	square	of	the	input	size	is	a	
quadratic-time	algorithm.
– O(n2)



Watch	Phil	Tear	A	Phone	Book	in	Half



• If	a	list	is	sorted,	you	can	use	the	binary	search	
algorithm	to	find	the	position	of	an	element	in	
the	list.
– Takes	logarithmic	time.

• If	a	list	is	not	sorted,	you	can't	use	binary	
search;	you	have	to	use	sequential	search.
– Takes	linear	time.



• Some	problems	have	algorithms	that	run	even	
more	slowly	than	quadratic	time.
– Cubic	time	(n3),	higher	polynomials,	…
– Exponential	time	(2n)	is	even	slower!

• In	some	situations,	we	depend on	the	fact	that	
we	don't	have	fast	algorithms	to	solve	
problems.
– Usually	security	situations	involving	breaking	
codes.



Time	(T)

Input	size	(n)

constant

linear

quadratic

exponential

logarithmic



logarithmic linear quadratic exponential

n	=	10
n	=	20
n	=	30

n	=	50
n	=	100

n	=	1,000

n	=	10,000
n	=	100,000

n	=	1,000,000

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms
n	=	20 0.0043	ms
n	=	30 0.0049	ms

n	=	50 0.0056	ms
n	=	100 0.0066	ms

n	=	1,000 0.0099 ms

n	=	10,000 0.0133 ms
n	=	100,000 0.0166	ms

n	=	1,000,000 0.0199	ms

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms
n	=	20 0.0043	ms 0.02 ms
n	=	30 0.0049	ms 0.03	ms

n	=	50 0.0056	ms 0.05	ms
n	=	100 0.0066	ms 0.1 ms

n	=	1,000 0.0099 ms 1	ms

n	=	10,000 0.0133 ms 10	ms
n	=	100,000 0.0166	ms 0.1 sec

n	=	1,000,000 0.0199	ms 1	sec

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms 0.1	ms
n	=	20 0.0043	ms 0.02 ms 0.4	ms
n	=	30 0.0049	ms 0.03	ms 0.9	ms

n	=	50 0.0056	ms 0.05	ms 2.5	ms
n	=	100 0.0066	ms 0.1 ms 0.01 sec

n	=	1,000 0.0099 ms 1	ms 1	sec

n	=	10,000 0.0133 ms 10	ms 1.67 min
n	=	100,000 0.0166	ms 0.1 sec 2.77	hours

n	=	1,000,000 0.0199	ms 1	sec 11.57	days

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms 0.1	ms 1.024	ms
n	=	20 0.0043	ms 0.02 ms 0.4	ms
n	=	30 0.0049	ms 0.03	ms 0.9	ms

n	=	50 0.0056	ms 0.05	ms 2.5	ms
n	=	100 0.0066	ms 0.1 ms 0.01 sec

n	=	1,000 0.0099 ms 1	ms 1	sec

n	=	10,000 0.0133 ms 10	ms 1.67 min
n	=	100,000 0.0166	ms 0.1 sec 2.77	hours

n	=	1,000,000 0.0199	ms 1	sec 11.57	days

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms 0.1	ms 1.024	ms
n	=	20 0.0043	ms 0.02 ms 0.4	ms 1.049	sec
n	=	30 0.0049	ms 0.03	ms 0.9	ms

n	=	50 0.0056	ms 0.05	ms 2.5	ms
n	=	100 0.0066	ms 0.1 ms 0.01 sec

n	=	1,000 0.0099 ms 1	ms 1	sec

n	=	10,000 0.0133 ms 10	ms 1.67 min
n	=	100,000 0.0166	ms 0.1 sec 2.77	hours

n	=	1,000,000 0.0199	ms 1	sec 11.57	days

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms 0.1	ms 1.024	ms
n	=	20 0.0043	ms 0.02 ms 0.4	ms 1.049	sec
n	=	30 0.0049	ms 0.03	ms 0.9	ms 17.9	min

n	=	50 0.0056	ms 0.05	ms 2.5	ms
n	=	100 0.0066	ms 0.1 ms 0.01 sec

n	=	1,000 0.0099 ms 1	ms 1	sec

n	=	10,000 0.0133 ms 10	ms 1.67 min
n	=	100,000 0.0166	ms 0.1 sec 2.77	hours

n	=	1,000,000 0.0199	ms 1	sec 11.57	days

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms 0.1	ms 1.024	ms
n	=	20 0.0043	ms 0.02 ms 0.4	ms 1.049	sec
n	=	30 0.0049	ms 0.03	ms 0.9	ms 17.9	min

n	=	50 0.0056	ms 0.05	ms 2.5	ms 35.7 years
n	=	100 0.0066	ms 0.1 ms 0.01 sec

n	=	1,000 0.0099 ms 1	ms 1	sec

n	=	10,000 0.0133 ms 10	ms 1.67 min
n	=	100,000 0.0166	ms 0.1 sec 2.77	hours

n	=	1,000,000 0.0199	ms 1	sec 11.57	days

One	million	“basic”	operations	per	second.



logarithmic linear quadratic exponential

n	=	10 0.0033	ms 0.01	ms 0.1	ms 1.024	ms
n	=	20 0.0043	ms 0.02 ms 0.4	ms 1.049	sec
n	=	30 0.0049	ms 0.03	ms 0.9	ms 17.9	min

n	=	50 0.0056	ms 0.05	ms 2.5	ms 35.7 years
n	=	100 0.0066	ms 0.1 ms 0.01 sec 4	x	1016	years

n	=	1,000 0.0099 ms 1	ms 1	sec 3	x	10287 years

n	=	10,000 0.0133 ms 10	ms 1.67 min ----
n	=	100,000 0.0166	ms 0.1 sec 2.77	hours ----

n	=	1,000,000 0.0199	ms 1	sec 11.57	days ----

One	million	“basic”	operations	per	second.


