
Dynamic Memory Allocation

Syntax:

type *ptr = new type; // allocate memory for one variable of the type given
// ...use ptr...
delete ptr; // deallocate the memory pointed to by ptr

OR

// allocate memory for num variables of the type given (num is an integer)
type *ptr = new type[num];
// ...use ptr...
delete[] ptr; // deallocate the memory pointed to by ptr

Example 1

int *ptr = new int; // make a new int on the heap
*ptr = 10; // set it to 10
delete ptr; // delete it
ptr = nullptr; // good practice

Example 2

int *ptr = new int; // make a new int on the heap
*ptr = 10; // set it to 10
int *ptr2 = *ptr // OK; two pointers pointing to that location
delete *ptr2; // OK; delete the memory through the other pointer
delete *ptr; // error; can’t delete the same memory twice
*ptr = 11; // error; can’t access this memory after deleting it

Example 3

int *ptr = new int; // make a new int on the heap
*ptr = 10; // set it to 10
int *ptr2 = new int; // make a second int on the heap
*ptr2 = 20; // set it to 20
int *temp = ptr;
ptr = ptr2;
ptr2 = ptr; // ptr now points to 20, ptr2 points to 10
delete ptr1; // OK
delete ptr2; // OK
delete temp; // error; temp points to 10, which has already been deleted

Example 4

double *ptr = new double[3]; // make an array of 3 doubles on the heap
ptr[0] = 5; // OK
ptr[1] = 10; // OK
ptr[2] = 15; // OK
ptr[3] = 20; // index out of bounds (C++ will not flag it, though!)
cout << ptr[0] << ptr[1] << ptr[2] << endl; // all OK
delete[] ptr; // OK
ptr[0] = 30; // error; the memory has been deleted

