
Dynamic	Memory



Review
• C++	must	figure	out	the	amount	of	space	each	
variable	takes	up	in	memory	at	compile-time	
(before	the	program	is	run).

• When	a	function	is	called,	C++	reserves	a	block	of	
memory	for	all of	that	function's	variables	at	
once.

• Therefore,	C++	always	knows,	before	a	program	
starts	running,	the	memory	address	of	every	
variable	in	a	program,	relative	to	the	block	of	
memory	for	the	function	that	variable	belongs	
to.



int main() // main needs 8 bytes
{
int x; // 4 bytes
int y; // 4 bytes
f();
g();

}
void f() { // f needs 4 bytes
int z;

}
void g() { // g needs 4 bytes
int q;
f();

}



int main() // main needs 8 bytes 
{
int x; // 4 bytes (start	of	block	+	0)
int y; // 4 bytes (start	of	block	+	4)
f();
g();

}
void f() { // f needs 4 bytes
int z; // 4 bytes (start	of	block	+	0)

}
void g() { // g needs 4 bytes
int q; // 4 bytes (start	of	block	+	0)
f();

}



• Why	does	C++	care	about	memory	addresses	
relative	to	a	function's	block	of	memory?

• If	C++	knows:
– the	starting	address	for	a	function's	block	of	
memory,	and

– the	relative	offset	for	every	variable	in	that	
function

• then	C++	can	very	quickly	compute	the	
memory	address	for	any	variable	by	adding	
those	two	pieces	together.



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

Before	program	begins



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

main()	is	called



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

f()	is	about	to	be	called



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

f

z

f()	is	called



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

f()	finishes;	go	back	to	main()



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

g()	is	about	to	be	called



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

g

q

g()	is	called



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

g

q

f()	is	about	to	be	called	from	g()



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

g

q

f

z

f()	is	called	from	g()



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

g

q

f()	finishes	running;	go	back	to	g()



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main

x y

g()	finishes	running;	go	back	to	main()



int main() 
{
int x;
int y;
f();
g();

}
void f() {
int z;

}
void g() {
int q;
f();

}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

main()	finishes



But	what	about	vectors?

int main() {
vector<int> vec;
int x;

} 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main...?

vec? x?



But	what	about	vectors?

int main() {
vector<int> vec1, vec2;
int x;

} 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 1 1 1 1 1

memory	for	main...?

x vec1? vec2?



C++	has	two	areas	of	memory
• The	"regular"	area	of	memory	that	C++	uses	is	
called	the	stack.
– This	is	where	C++	puts	variables	that	it	knows	the	size	
of	at	compile-time	because	they	have	fixed	sizes	(ints,	
doubles,	etc).

– Variables	on	the	stack	are	automatically	allocated	
memory	when	their	functions	are	called,	and	
automatically	deallocated	when	their	functions	end.

– Therefore,	sometimes	they	are	called	automatic	
variables.



• There	is	a	second	area	of	memory	that	must
be	used	for	storing	variables	whose	sizes	
cannot	be	determined	at	compile	time	
(strings,	vectors,	etc).
– This	area	is	called	the	heap.

• Variables	on	the	heap	are	not	automatically	
allocated	memory,	nor	is	their	memory	ever	
automatically	deallocated	(opposite	of	stack	
variables).

• The	programmer	explicitly	controls	when	the	
memory	is	allocated	and	deallocated.



Why	is	this	useful?

• Create	variables	that	may	grow	and	shrink	in	
size	as	necessary.

• Create	more	sophisticated	data	structures.



Dynamic	memory	allocation
• All	access	to	heap	variables	is	done	through	
pointers.

• type *ptr = new type;
– allocate	memory	on	the	heap	for	one	new	variable	
with	the	given	type and	return	a	pointer	to	it.

• delete ptr;
– deallocate	the	memory	pointed	to	by	ptr
– good	idea	to	then	set	ptr to	nullptr

• You	must	deallocate	all	your	memory	when	you	
are	done	with	it!



Dynamic	memory	gotchas

• For	automatic	(stack)	variables,	you	normally	
have	two	ways	to	access	the	variable:	the	
variable	itself	and	any	pointer(s)	to	the	
variable.

• For	heap	variables,	the	only	access	is	through	
a	pointer.



Dynamic	memory	gotchas

• The	pointer to	the	dynamic	memory	is	still	an	
automatic	variable,	so	it	can	be	passed	and	
returned	from	functions	like	normal.
– Treat	the	pointer	variable	like	any	other	variable.
– Treat	the	memory	it	points	to	differently!

• You	can	copy	that	pointer	as	much	as	you	
want,	but	you	must	delete it	exactly	once	
(no	matter	how	many	copies	there	are	floating	
around).



Dynamic	memory	gotchas

• After	heap	memory	is	deleted,	it	may	be	
allocated	for	something	else,	so	any	existing	
pointers	to	that	memory	should	be	considered	
invalid.

• Deleting	the	same	memory	twice	is	bad.
• You	can	delete	memory	anytime	you	want.



• Allocate	two	new	ints on	the	heap	(dynamically).		
(keyword	is	new)

• Set	them	equal	to	10	and	20	and	print	them.
• Switch	the	pointers	so	each	pointer	now	points	to	
the	opposite	int.

• Print	them	again.
• Deallocate	the	memory.	(keyword	is	delete)

• Optional:	experiment	with	deleting	something	
that	has	already	been	deleted.		What	happens?	
What	happens	if	you	assign	to	something	that	has	
already	been	deleted?



Allocating	lots	of	variables	at	once
• type *ptr = new type[num];
– allocate	memory	on	the	heap	for	num new	
variables	of	type and	return	a	pointer	to	them.

– Use	square	bracket	[]	syntax	to	access	each	
element	(like	a	vector,	but	no	size/push_back).

• delete[] ptr;
– deallocate the	memory	pointed	to	by	ptr
– only	use	delete[]	with	new[]
– only	use	delete	with	new



Variables	that	grow	and/or	shrink

• Using	new type[num] still	doesn't	make	the	
dynamic	memory	grow	or	shrink.

• So	how	do	vectors	work?		
– A	vector	starts	off	my	allocating	(using	new)	a	
"default"	amount	of	space	for	items	in	the	vector.

– If	we	add	too	many	things	to	a	vector,	it	will	allocate	
more	space,	copy	everything	in	the	vector	into	the	
new	space,	then	delete[]	the	old	space.



• Allocate	(on	the	heap)	an	array	of	3	doubles.
• Assign	some	numbers	to	the	array.
• [Pretend	that	we	want	to	add	more	numbers.]
• Allocate	(on	the	heap)	a	second	array	of	6	
doubles.

• Copy	the	doubles	from	the	old	array	into	the	
new	one.

• delete[]	the	old	array.
• Print	the	new	array.
• delete[]	the	new	array.


