Dynamic Memory

Review

e C++ must figure out the amount of space each
variable takes up in memory at compile-time
(before the program is run).

* When a function is called, C++ reserves a block of
memory for all of that function's variables at
once.

* Therefore, C++ always knows, before a program
starts running, the memory address of every
variable in a program, relative to the block of
memory for the function that variable belongs
to.

int main() // main needs 8 bytes

{

int Xx; // 4 bytes
int y; // 4 bytes
£();
g();

}
void () { // T needs 4 bytes

int z;
}
void g() { // g needs 4 bytes

int q;
Q¥
}

int main() // main needs 8 bytes

{
int x; // 4 bytes (start of block + 0)
int y; // 4 bytes (start of block + 4)
£();
g();
}
void () { // T needs 4 bytes
int z; // 4 bytes (start of block + 0)
}
void g() { // g needs 4 bytes
int qg; // 4 bytes (start of block + 0)
()

¥

 Why does C++ care about memory addresses
relative to a function's block of memory?

e |If C++ knows:

— the starting address for a function's block of
memory, and

— the relative offset for every variable in that
function
e then C++ can very quickly compute the
memory address for any variable by adding
those two pieces together.

int main() Before program begins

1
int x; 111111
int y; 0123456789012345

f();
g();

}
void f() {

int z;

}

void g() {
int q;
£();

}

int main() main() is called
{
int X; 1
int y: 01234567890
-F(); | | | | | | |

. memory for main
g() J | I I I I I |

} —
void f() { X y
int z;
}
void g() {
int q;
£();
}

11111
12345

int main() f() is about to be called
{
int X; 1
int Y; 012345067890
-F(); | | | | | | |

. memory for main
g() J | I I I I I I

} —
void f() { X y
int z;
}
void g() {
int q;
£();
}

11111
12345

int main()
{
int X;
int y;
£();
g();

}
void f() {

int z;

}

void g() {
int q;
£();

}

1
01234567890

f() is called

111 1
2345

memory for main
I I I I I I I

X Y

VA

int main() f() finishes; go back to main()

1
int x; 111111
int y; 0123456789012345

-F(); (1K 1 1 1 | |

. memory for main
g() J | I I I I I I

} -—
void f() { X y
int z;
}
void g() {
int q;
£();
}

int main() g() is about to be called
{
int X; 1
int Y; 012345067890
-F(); | | | | | | |

. memory for main
g(); T R

} —
void f() { X y
int z;
}
void g() {
int q;
£();
}

11111
12345

int main()
{
int X;
int y;
£();
g();

}
void f() {

int z;

}

void g() {
int q;
£();

}

1
01234567890

g() is called

111 1
2345

memory for main
I I I I I I I

X Y

q

int main() f() is about to be called from g()

1
int x; 111111
int y; 0123456789012345

.F(); (1K 1 1 1 | | (1 |

. memory for main g
g() J | I I I I I I I I I

} -—r
void f() { X Y ’

int z;

}

void g() {
int g;
()

}

int main()
{
int X;
int y;
£();
g();

}
void f() {

int z;

}

void g() {
int q;
£();

}

1
01234567890

f() is called from g()

1
1

111 1
2345

I I I I I I
memory for main

g

f

| | | | | | | | | | | | |
X y o 4

int main() f() finishes running; go back to g()

1
int x; 111111
int y; 0123456789012345

.F(); (1K 1 1 1 | | (1 |

. memory for main g
g() J | I I I I I I I I I

} -—r
void f() { X Y ;

int z;

}

void g() {
int g;
()

}

int main() g() finishes running; go back to main()

1
int x; 111111
int y; 0123456789012345

-F(); (1K 1 1 1 | |

. memory for main
g() J | I I I I I I

} -—
void f() { X y
int z;
}
void g() {
int q;
£();
}

int main() main() finishes

1
int x; 111111
int y; 0123456789012345

f();
g();

}
void f() {

int z;

}

void g() {
int q;
£();

}

But what about vectors?

int main() {

}

vector<int> vec;

int x;

3
01234567890

11 1 1
2345

memory for main...?

_'_H_'_l

vec?

X?

But what about vectors?

int main() {
vector<int> vecl, vec2;
int Xx;
t X 111111
} 01234567890123465

memory for main...?
I I I I I I I I I I I I I I I

X vecl? vec2?

C++ has two areas of memory

* The "regular" area of memory that C++ uses is
called the stack.

— This is where C++ puts variables that it knows the size
of at compile-time because they have fixed sizes (ints,
doubles, etc).

— Variables on the stack are automatically allocated
memory when their functions are called, and
automatically deallocated when their functions end.

— Therefore, sometimes they are called automatic
variables.

 There is a second area of memory that must
be used for storing variables whose sizes
cannot be determined at compile time
(strings, vectors, etc).
— This area is called the heap.

* Variables on the heap are not automatically
allocated memory, nor is their memory ever
automatically deallocated (opposite of stack
variables).

 The programmer explicitly controls when the
memory is allocated and deallocated.

Why is this useful?

* Create variables that may grow and shrink in
Size as necessary.

* Create more sophisticated data structures.

Dynamic memory allocation

All access to heap variables is done through
pointers.
type *ptr = new type;

— allocate memory on the heap for one new variable
with the given type and return a pointer to it.

delete ptr;
— deallocate the memory pointed to by ptr
— good idea to then set ptr to nullptr

You must deallocate all your memory when you
are done with it!

Dynamic memory gotchas

e For automatic (stack) variables, you normally
have two ways to access the variable: the
variable itself and any pointer(s) to the
variable.

* For heap variables, the only access is through
a pointer.

Dynamic memory gotchas

* The pointer to the dynamic memory is still an
automatic variable, so it can be passed and
returned from functions like normal.

— Treat the pointer variable like any other variable.
— Treat the memory it points to differently!
* You can copy that pointer as much as you

want, but you must delete it exactly once

(no matter how many copies there are floating
around).

Dynamic memory gotchas

* After heap memory is deleted, it may be
allocated for something else, so any existing

pointers to that memory should be considered
invalid.

* Deleting the same memory twice is bad.

* You can delete memory anytime you want.

Allocate two new ints on the heap (dynamically).
(keyword is new)

Set them equal to 10 and 20 and print them.

Switch the pointers so each pointer now points to
the opposite int.

Print them again.
Deallocate the memory. (keyword is delete)

Optional: experiment with deleting something
that has already been deleted. What happens?
What happens if you assign to something that has
already been deleted?

Allocating lots of variables at once

e type *ptr = new type[num];
— allocate memory on the heap for num new
variables of type and return a pointer to them.

— Use square bracket [] syntax to access each
element (like a vector, but no size/push_back).

 delete[] ptr;

— deallocate the memory pointed to by ptr
— only use delete[] with new|]
— only use delete with new

Variables that grow and/or shrink

 Using new type[num] still doesn't make the
dynamic memory grow or shrink.

e So how do vectors work?

— A vector starts off my allocating (using new) a
"default" amount of space for items in the vector.

— If we add too many things to a vector, it will allocate
more space, copy everything in the vector into the
new space, then delete[] the old space.

Allocate (on the heap) an array of 3 doubles.
Assigh some numbers to the array.
[Pretend that we want to add more numbers.]

Allocate (on the heap) a second array of 6
doubles.

Copy the doubles from the old array into the
new one.

delete[] the old array.
Print the new array.

delete[] the new array.

