
Inheritance	wrapup,	
polymorphism

• Warmup:	Get	Dropbox	code	(apr-21-start.cpp).
Add	two	new	car	types	to	the	race	by	defining	two	new	
classes	that	inherit	from	car:

• A	racecar:
– can	accelerate	at	10	mph	every	second,	rather	than	5	mph	
every	second

– all	race	cars	have	a	top	speed	of	200	mph.
• A	clunker:
– still	accelerates	at	5	mph	per	second.
– top	speed	of	50	mph.
– But	after	calling	drive()	3	times,	the	car	dies,	immediately	
stops,	can't	be	fixed,	and	you	have	to	call	your	parents	to	
pick	you	up.

• Optional:	truck
– Accelerates	2	mph	per	second,	but	only	on	every	other	call	
to	drive.

• When	a	class	is	a	particular	kind	of	another	
class,	use	inheritance.

class X { void f(); };
class Y : public X { void g(); };
void X::f() { cout << "Base f"; }
void Y::g() { cout << "Derived g"; }

X ex; Y why;
ex.f();
why.f();
why.g();

Prints	"Base	f"

Prints	"Base	f"

Prints	"Derived	g"

• A	derived	class	is	allowed	to	overridemethods	
in	the	base	class.

class X { void f(); };
class Y : public X { void f(); };
void X::f() { cout << "Base f"; }
void Y::f() { cout << "Derived f"; }

X ex; Y why;
ex.f();
why.f();

Prints	"Base	f"

Prints	"Derived	f"

• If	a	derived	class	overrides	a	method,	the	
overridden	method	code	can	still	call	the	base	
class	version	of	the	method	if	needed.

class X { void f(); };
class Y : public X { void f(); };
void X::f() { cout << "Base f"; }
void Y::f() { X::f(); cout << "Derived f"; }

X ex; Y why;
ex.f();
why.f();

Prints	"Base	f"

Prints	"Base	f	Derived	f"

Polymorphism

• From	Greek	πολύς,	polys,	"many,	much"	and	
μορφή,	morphē,	"form,	shape."

• The	ability	for	a	derived	class	to	substitute	in	
code	where	a	base	class	is	used.

• This	concept	is	not	new:

void f(double x) {
/* do something */;

}

int main() {
int y = 3;
f(y);

}

C++	will	automatically	convert	a	derived	class	
object	to	a	base	class	object	when	required.

Typical	situations:
• Variable	assignment
• Calling	a	function

Caveat	emptor

• When	C++	automatically	converts	a	derived-
class	object	to	a	base-class	object,	the	
converted	object	loses	all	extra	abilities	the	
derived	class	had.

class A {
public:
void f() { cout << "base f"; }

};
class B : public A {
public:
void f() { cout << "derived f"; }
void g() { cout << "derived g"; }

};
int main() {
A a; a.f();
B b; b.f(); b.g();
A copy = b; copy.f(); copy.g();

}

Caveat	emptor

• When	C++	automatically	converts	a	derived-
class	object	to	a	base-class	object,	the	
converted	object	loses	all	extra	abilities	the	
derived	class	had.

• Copying	the	derived-class	object	into	a	base-
class	object	means	the	copy	only	has	the	
abilities	of	the	base	class.

• How	do	we	avoid	making	copies?

Step	1:	Use	Pointers

• A	base-class	pointer	can	point	to	a	derived-
class	object.

• Because	no	copy	is	made,	the	pointer	still	
points	at	an	object	that	has	all	the	abilities	of	
the	derived	class.

• The	base-class	pointer	will	still	only	let	you	
(directly)	call	functionality	specified	by	the	
base	class.

Step	2:	Use	virtual	methods

• Class	methods	can	be	tagged	with	the	
keyword	"virtual."

• When	a	virtual	method	is	called	using	a	
pointer,	C++	uses	the	version	of	the	method	
that	belongs	to	the	type	of	the	object	being	
pointed	at,	not	the	type	of	the	pointer.

