
Linked	List	lab	(only	head	pointer)	–	Day	2	
	

1. Get	dropbox	code.		Read	through	all	of	the	starter	code.		
Things	written	already:	constructor,	print,	prepend,	push_back.		Make	sure	you	
understand	this	code!	
	

2. Write	remove_head().		This	function	removes	the	node	at	the	head	of	the	list.		No	
traversal	is	needed.		There	are	two	cases	–	list	is	empty	and	list	is	not	empty.	
	

3. Write	remove_data().		This	searches	for	and	removes	an	item	in	the	linked	list	by	its	
data	value,	as	opposed	to	always	removing	the	head.		You	will	need	to	traverse	the	list.	
	
Hints:	Break	this	into	5	steps:	

a. Check	if	the	list	is	empty,	handle	this	case	separately.	
b. Check	if	the	head	of	the	list	contains	our	item;	handle	this	separately.	
c. If	we	get	here,	our	item	must	not	be	the	head,	so	traverse	the	list	to	find	it.		Use	

the	before/curr	traversal	technique	to	stop	when	we	reach	the	item	we	are	
looking	for.	

d. Did	we	walk	off	the	end	of	the	list?			
e. If	not,	remove	the	item	we	want	to	remove.	

	
4. Write	the	destructor.		The	destructor	should	traverse	the	list	and	delete	all	the	nodes	

within.		This	is	tricky!		Don’t	delete	a	node	if	you	plan	on	accessing	its	next	pointer	
immediately	after!		You	will	need	to	use	the	before/curr	traversal	idea.	
	

5. Write	size().		A	C++	vector	has	a	function	called	size(),	so	our	linked	list	should	have	the	
same	functionality.		We	haven’t	explicitly	talked	about	how	to	write	this,	but	I’m	sure	
you	can	figure	it	out.		What	is	the	big-oh	time?	
	

6. Write	at().		This	should	work	similarly	to	the	C++	vector	at()	function.		What	is	the	big-oh	
time?	
	

7. Write	insert().		This	function	will	allow	insertion	into	the	middle	of	a	list.			
	

8. If	you	have	time,	look	up	how	to	time	functions	in	C++.		Write	some	code	to	test	
prepending/deleting	the	head	of	a	linked	list	vs	the	same	thing	in	a	C++	vector.		Do	a	
million	(or	more)	insertions/deletions	and	see	which	one	is	faster.	


