
Objects	II

• A	class is	a	struct plus	some	associated	
functions	that	act	upon	variables	of	that	struct
type.
– class	=	struct +	functions

• An	object is	a	variable	of	some	class	type
– aka	"an	instance of	a	class.”

• In	a	class,	the	variables	of	that	class	are	called	
fields;	the	functions	are	called	methods.
– Together,	 the	fields	and	methods	are	called	
members (book	uses	data	members	 and	member	
functions).

class dog {
public:
string name;
int age;
void bark();

};

void dog::bark() {
cout << name << "says woof!";

}

Name	of	the	class

Every	dog	has	a	name

Every	dog	has	an	age

Every	dog	has	the	ability	to	
bark

class dog {
public:
string name;
int age;
void bark();

};

void dog::bark() {
cout << name << "says woof!";

}

A	class's	methods	are	allowed	
to	use	the	fields	defined	
within	that	class	as	local	
variables.

A	method	(normally)	only	has	
access	to	the	fields	for	its	
own	object.

void dog::bark() {
cout << name << "says woof!";

}
main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();

void dog::bark() {
cout << name << "says woof!";

}
main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();

name:	"Fido"
age:	3

mydog:

main

void dog::bark() {
cout << name << "says woof!";

}
main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();

name:	"Fido"
age:	3

name:	"Fluffy"
age:	8

mydog:

otherdog:

main

void dog::bark() {
cout << name << "says woof!";

}
main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();

name:	"Fido"
age:	3

name:	"Fluffy"
age:	8

mydog:

otherdog:

main

dog::bark()

void dog::bark() {
cout << name << "says woof!";

}
main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();

name:	"Fido"
age:	3

name:	"Fluffy"
age:	8

mydog:

otherdog:

main

dog::bark()

• Every	time	a	method	of	a	class	is	called,	there	
is	a	special	pass-by-reference	variable	created	
that	points	to	the	calling	object.

• When	the	method	uses	a	variable	name	that	is	
not	found	in	that	method,	C++	tries	to	find	it	
using	the	special	reference	variable.

• Most	object-oriented	(OO)	programming	
languages	allow	us	to	specify	fields	and	
methods	as	public or	private.

• Privatemembers	can	be	used	only	by	code	
inside	the	class’s	methods.

• Publicmembers	can	be	used	by	code	inside	or	
outside	the	class’s	methods.

class A {
public:
int x;
void f();

private:
int y;
void g();

}

int main()
{

A obj1, obj2;

obj1.x = 4; // ok
obj1.y = 2; // error

obj2.f(); // ok
obj2.g(); // error

}

Why	have	public	and	private?

• Sometimes	we	need	to	hide certain	variables	
or	functions	from	the	user	of	a	class	so	the	
user	doesn't	accidentally	screw	things	up.

• This	is	called	information	hiding.
• Used	to	protect	the	members	of	an	object	that	
should	only	be	used	by	the	person	writing	the	
class.

What	could	go	
wrong	with	age	or	

name	being	
public?

class dog {
public:
string name;
int age;
void bark();

};

void dog::bark() {
cout << name << "says woof!";

}

Good	rule	of	thumb	
to	make	all	fields	
(variables)	private	
unless	you	have	a	
very	good	reason	

not	to.

class dog {
public:
void bark();

private:
string name;
int age;

};

void dog::bark() {
cout << name << "says woof!";

}

main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();
cout << "My dog is " << mydog.age << endl;

What	is	wrong	
with	this	code	
now?

main
dog mydog;
mydog.name = "Fido";
mydog.age = 3;

dog otherdog;
otherdog.name = "Fluffy";
otherdog.age = 8;

mydog.bark();
otherdog.bark();
cout << "My dog is " << mydog.age << endl;

What	is	wrong	with	
this	code	now?

Red	fields	are	
private;	cannot	be	
used	outside	of	the	
class	now.

Add	setters	and	
getters.

class dog {
public:
void bark();
void setName(string newName);
string getName();
void setAge(int newAge);
double getAge();

private:
string name;
double age;

}; // rest of code on computer

• The	public	members	of	a	class	are	known	as	the	
class's	interface.
– These	members	 are	what	the	users	of	your	class	see.
– Generally	describes	what a	class	does.	

• The	private	members	of	a	class	are	known	as	the	
class's	implementation.
– These	are	hidden	from	the	user.
– Generally	describe	how a	class	works.

• We	strive	to	keep	a	class's	interface	consistent	
over	time.		We	can	change	the	implementation	
any	time	we	want.

What	is	in	a	car's	interface	and	implementation?

class dog {
public:
... (all the same stuff from before)...
int getAgeAsHuman();
void setAgeAsHuman(double newAge);

private:
// Should we add double ageAsHuman?

};

• To	your	dog	class,	add	the	ability	 for	the	dog	to	have	some	
amount	of	energy.		The	dog's	energy	can	never	go	below	
zero.

• Edit	print()	so	it	displays	energy	as	well.
• Add	a	getter	and	a	setter	called	getEnergy()	and	setEnergy(int

newEnergy).		Test	your	code.
• Add	a	method	for	the	dog	to	playFetch().	 	Playing	 fetch	tires	

the	dog	out,	so	it	lowers	the	dog’s	energy	by	1.		Test	your	
code.

• Add	a	method	for	the	dog	to	sleep	for	a	certain	number	of	
hours.		The	dog's	energy	should	be	raised	proportionally	 to	
the	number	of	hours	it	sleeps.		Test	your	code.

• Extra:	add	a	method	called	playWith(dog	 &	buddy)	to	allow	a	
dog	to	play	with	another	dog.		Playing	with	another	dog	
lowers	both	dog’s	energies.		Test	your	code.

