
Objects	V

Digression:	Algorithms
• CS	is	just	as	much	about	inventing	and	
implementing	your	own	algorithms	as	it	is	
implementing	other	people’s.
• Examples:	mesostic project,	reduce()

• Just	because	an	algorithm	works doesn’t	mean	it’s	
the	best	way	to	solve	the	problem.

• Let’s	investigate	a	number	of	different	ways	to	
implement	reduce().

Reducing	a	fraction	to	lowest	terms
• Basic	idea	(same	as	elementary	
school):
• Find	the	largest	integer	that	goes	
evenly	into	the	numerator	and	
denominator.
• Divide	both	the	numerator	and	
denominator	by	this	integer	(called	
the	greatest	common	divisor,	or	
GCD).

4/16	=>	1/4

18/30	=>	3/5

100/25	=>	4/1

3/7	=>	3/7

Reducing	a	fraction	to	lowest	terms
• Think before	you	code:
• How	do	I	test	if	a	potential	divisor	
goes	evenly	into	the	numerator	and	
denominator?
• What	is	the	smallest	possible	GCD	
of	two	integers?
• What	is	the	largest	possible	GCD?
• I	need	a	loop	to	examine	all	the	
possible	divisors	between	the	
largest	and	the	smallest.		In	what	
order	should	I	examine	them?

4/16	=>	1/4

18/30	=>	3/5

100/25	=>	4/1

3/7	=>	3/7

void rational::reduce()
{
int start = min(numer, denom);
int gcd;

for (int divisor = start; divisor >= 1; divisor--)
{
if ((numer % divisor == 0) && (denom % divisor == 0))
{

gcd = divisor;
break;

}
}

numer = numer / gcd;
denom = denom / gcd;

}

Is	this	the	best	algorithm	for	GCD?
• No,	it’s	not.
• The	Euclidean	algorithm	is	faster,	but	is	harder	to	understand	why	it	
works.
int gcd(int a, int b) {

while (b != 0) {
int t = b;
b = a % b;
a = t;

}
return a; // a is the GCD of a and b.

}

• This	is	one	of	the	oldest	algorithms	we	know	(375	BC	or	older).

Back	to	classes...
• Should	this	reduce()	method	be	public	or	private?		
What	are	the	pros	and	cons	of	each	way?

• Underlying	question:	should	we	let	the	user	go	
around	using	unreduced	fractions?	Or	should	we	
let	the	user	assume	that	whenever	they	use	our	
class,	the	fractions	will	always	be	in	lowest	terms?
• Common	question	when	designing	classes:	Do	we	take	
some	control	away	from	the	user	in	order	to	simplify	the	
way	they	use	the	class?

“Everything	should	be	made	as	simple	as	
possible,	but	not	simpler.”

--- Albert	Einstein	
(attributed)

Back	to	classes...
• Question	– do	we	want	to	support	fractions	not	in	
lowest	terms?
• If	yes,	then	we	make	the	method	public	and	have	
the	user	call	reduce()	when	they	want	to.
• If	no,	then	we	make	the	method	private	and	we	will	
call	reduce()	when	appropriate	to	ensure	the	user	
never	sees	a	fraction	not	in	lowest	terms.

• Let’s	look	at	one	way	of	doing	this...

Lab	time!

