
Rational	Numbers	Lab	
	
A	rational	number	is	a	number	that	can	be	expressed	as	the	quotient	of	two	integers,	where	the	denominator	is	not	zero.		For	
instance,	1/2,	3/4,	40/17,	and	5/1	are	all	rational	numbers.		C++	does	not	have	a	rational	data	type,	and	therefore	stores	all	
rational	numbers	as	floats	or	doubles.		This	can	cause	problems	because	some	rational	numbers,	such	as	1/3,	cannot	be	
represented	exactly	in	decimal	notation	(at	least	not	with	a	finite	number	of	digits).		In	this	lab,	you	will	create	a	simple	
rational	class	to	better	represent	(positive)	rational	numbers.	
	

1. Create	a	class	called	rational.		This	class	should	have	two	private	integer	fields,	the	numerator	and	the	denominator.		
Add	a	getter	for	the	numerator	and	one	for	the	denominator.		We	will	not	add	setters;	our	rational	numbers	will	be	
immutable	once	constructed	(like	Python’s	strings).	
	

2. Add	two	constructors	to	your	class.		One	should	be	a	“default”	constructor	(no	arguments)	that	constructs	the	rational	
number	1/1.		The	other	should	be	a	constructor	that	lets	the	user	construct	any	rational	number	they	want.		This	
constructor	will	take	two	integer	arguments:	a	numerator	and	a	denominator.		You	should	never	let	the	user	create	a	
rational	number	with	a	denominator	of	zero	(call	exit(1)	if	they	try).	
	
Example	of	usage:	
rational one; // construct the rational number 1/1
rational onehalf(1, 2); // construct a rational number representing 1/2
	

3. Add	a	method	called	print()	to	your	class.		This	method	will	use	cout	to	print	the	rational	number	to	the	screen.		For	
example,	onehalf.print()	should	print	1/2	to	the	screen	(assuming	you	have	the	onehalf	declaration	line	from	
question	2).	
	

4. Rational	numbers	are	usually	always	given	in	lowest	terms	(where	the	numerator	and	denominator	have	no	factors	in	
common	other	than	1).		Add	a	method	called	reduce()	that	reduces	a	rational	number	to	lowest	terms.		Should	this	
method	be	public	or	private	and	why?		Where	should	it	be	used	if	you	want	to	guarantee	your	rational	numbers	are	
always	in	lowest	terms?	
	
Hint:	there	are	lots	of	ways	to	write	this	method.		A	simple	way	is	to	find	the	greatest	common	divisor	(GCD)	of	the	
numerator	and	denominator	(the	largest	integer	that	is	a	factor	of	both).		As	long	as	the	GCD	is	greater	than	1,	you	
know	the	rational	is	not	in	lowest	terms	and	you	can	divide	both	the	numerator	and	denominator	by	this	factor.	
	

5. Add	a	method	to	your	class	that	lets	you	multiply	two	rational	numbers	together.		This	function	should	take	one	
rational	number	argument	and	return	the	product	of	the	class’s	rational	number	with	the	argument:	
	
rational rational::multiply(const rational & other)

Example	of	how	this	might	be	used:	
	
rational a(1, 2);
rational b(3, 4);
rational c = a.multiply(b); // a and b are unchanged, c is 3/8

Hint:	This	is	easier	if	you	let	your	reduce()	function	do	some	of	the	work	for	you.
	

6. Add	a	method	to	your	class	that	lets	you	add	two	rational	numbers	together.		This	function	should	take	one	rational	
number	argument	and	return	the	sum	of	the	class’s	rational	number	with	the	argument:	
	
rational d(2, 3);
rational e(3, 4);
rational f = d.add(f); // d and e are unchanged, f is 17/12
	

7. Add	more	capabilities	to	your	class;	e.g.,	conversion	to	a	double,	taking	the	inverse	of	a	rational,	allowing	for	negative	
rational	numbers,	subtraction,	division,	preventing	division	by	zero,	testing	if	one	rational	is	less	than	another.		

	

