
Recursion	Lab	
	
You	should	not	use	loops	when	writing	any	of	these	functions,	unless	otherwise	specified.	
	

1. Suppose	we	want	to	write	a	recursive	function	that	takes	an	argument	n,	that	adds	up	all	the	
numbers	between	1	and	n,	inclusive.		This	function	has	the	signature:	int sum(int n).		Define	a	
recursive	formulation	below:	
	
Base	case:		 	 if	n	=	_______	,	then	sum(n)	=	_______________	
	
	
Recursive	case:	 if	n	>	_______	,	then	sum(n)	=	___________		+		________________________________________	
	
Translate	your	recursive	formulation	into	C++.		Test	your	code	in	main().	
	

2. Suppose	we	want	to	write	a	recursive	function	that	takes	an	argument	n,	that	counts	all	the	prime	
numbers	between	2	and	n,	inclusive.		Signature	is	int count_primes(int n).		Assume	you	have	
access	to	another	function,	is_prime(n),	that	returns	a	boolean	that	states	whether	n	is	a	prime	
number	or	not.		Define	a	recursive	formulation:	
	
Base	case:	 	 if	n	=	______	,	then	count_primes(n)	=	________________	
	
	
Recursive	case	A:	 if	n	>	____	AND	___________,	then	count_primes(n)	=	______	+	_______________________	
	
	
Recursive	case	B:	 if	n	>	____	AND	___________,	then	count_primes(n)	=	______	+	_______________________	
	
Translate	your	recursive	formulation	into	C++.		is_prime	is	already	written	for	you.			
Test	your	code	in	main().	
	

3. Write	a	recursive	function	to	compute	a^b,	(a	raised	to	the	b	power)	where	a	and	b	are	non-
negative	integers.		The	function’s	signature	is	long long power(a, b).		(Obviously,	you	may	
not	use	the	built-in	pow	function	to	solve	this.)	
	
Base	case:	 	 if	b	=	__________	,	then	power(a,	b)	=	_____________________	
	
	
Recursive	case(s):	
(up	to	you!)	
	
Translate	your	recursive	formulation	into	C++.		Test	your	code	in	main().	
	
Before	moving	on,	think	about	how	many	total	multiplications	your	code	does.		Can	lower	the	
number	of	multiplications?		Hint:	to	compute	(for	instance)	2^8	=	2	*	2	*	2	*	2	*	2	*	2	*	2	*	2,	you	
don’t	actually	need	seven	multiplications.	
	
(turn	page	over)		
	
	



4. Write	a	function	to	test	if	a	string	is	a	palindrome	(reads	the	same	forwards	and	backwards).	
	
bool is_pal(string s): 
 
Base	case:		 	 if	s.length()	<	_________	,	then	is_pal(s)	=	_____________	
	
	
Recursive	case	A:	 if	s.length()	>=	________	AND	______________________,		

	
	

then	is_pal(s)	=	__________________________________________	
	
	

Recursive	case	B:	 if	s.length()	>=	________	AND	______________________,		
	
	

then	is_pal(s)	=	__________________________________________	
 

5. Suppose	we	want	to	write	a	recursive	function	to	turn	an	integer	into	a	simplified	Roman	numeral.		
Simplified	in	this	case	means	we	will	ignore	the	subtraction	rules.		Roman	numerals	use	seven	
symbols:	I	=	1,	V	=	5,	X	=	10,	L	=	50,	C	=	100,	D	=	500,	M	=	1000.		Read	the	Wikipedia	page	for	
Roman	numerals	if	you	need	a	refresher	on	how	to	interpret	them.	
	
Write	a	function	string int_to_roman(int n)	that	returns	(not	prints)	an	int	as	a	Roman	
numeral.	
	

6. Write	a	recursive	function	to	find	the	maximum	element	in	a	vector	of	integers.		You’ve	done	this	
with	a	loop	many	times,	but	now	you	will	write	a	recursive	version.	
	
Hint:	The	“natural”	recursive	formulation	involves	calling	the	function	recursively	on	slices	of	the	
original	list	that	continue	getting	smaller:	
	
Base	case:	the	maximum	element	in	a	vector	of	size	1	is	the	lone	element	in	the	vector;	that	is,	
vec[0]	
Recursive	case:	the	maximum	element	in	a	vector	of	size	>	1	is	the	larger	of	vec[0]	and	the	
maximum	element	in	vec[1:size]			(using	Python	slice	syntax	here)	
	
Because	in	C++	there	is	no	convenient	“slice”	operator	like	there	is	in	Python,	we	must	be	a	little	
clever	to	work	around	this.		Instead	of	slicing	the	list	over	and	over,	we	have	our	max	function	take	
two	extra	arguments,	that	specify	our	current	slice	into	the	vector.		That	is,	when	you	call	this	
function	recursively,	vec	never	changes,	only	start	&	end	change.	
	
int max(const vector<int> & vec, int start, int end) 
 
Base	case:			 	 if	start	==	end,	then	max	=	_____________	
	
Recursive	case:		 otherwise,	then,	if	_____________	>	_____________,	then	max	=	____________________	
	
	 	 	 	 	
	 	 	 	 	 					if	_____________	<=	____________,	then	max	=	___________________	
 


