
Binary	Search		
	
The	binary	search	algorithm	is	a	mainstay	in	computer	science.		Given	a	sorted	array	or	vector	of	items,	
the	algorithm	is	used	to	test	whether	or	not	a	candidate	item	(the	key)	is	in	the	array	or	not.		Often	the	
algorithm	is	written	in	such	a	way	that	it	returns	the	position	(index)	within	the	array	at	which	the	key	is	
located,	rather	than	only	a	Boolean	value	indicating	whether	key	was	found	or	not.	
	
Recall	that	the	linear	search	algorithm	solves	this	same	problem,	but	does	not	assume	the	array	is	sorted.		
By	beginning	with	a	sorted	array,	binary	search	usually	runs	much	faster	than	linear	search.	
	
Binary	search	begins	by	identifying	the	item	in	the	middle	of	the	array	and	comparing	it	against	the	key.		
If	the	middle	item	matches	the	key,	then	the	position	of	the	middle	item	is	returned.		If	the	middle	item	is	
larger	than	the	key,	the	algorithm	repeats	itself	on	the	sub-array	to	the	left	of	the	middle	item;	if	the	
middle	item	is	smaller	than	the	key,	the	algorithm	repeats	on	the	sub-array	to	the	right	of	the	middle	
item.		If	the	remaining	sub-array	to	be	searched	ever	becomes	empty,	we	know	the	key	is	not	in	the	array.	
	
The	“repetition”	part	of	the	algorithm	can	be	implemented	using	iteration	(a	loop)	or	recursion.		In	either	
case,	the	algorithm	maintains	two	variables	to	keep	track	of	the	current	upper	and	lower	bounds	for	the	
portion	of	the	array	that	could	potentially	contain	the	key.			
	
We	present	the	algorithm	as	a	search	over	a	sorted	vector	of	integers,	though	any	data	type	can	be	used	
as	long	as	the	vector	is	sorted	in	some	fashion.			
	

1. We	are	given		
a. an	array	A	of	size	n,	indexed	from	0	to	n-1	
b. an	integer	key	to	look	for	in	the	array	
c. an	integer	low	that	is	the	lowest	index	in	the	array	that	could	contain	the	key	
d. an	integer	high	that	is	the	highest	index	in	the	array	that	could	contain	the	key	

2. If	low	>	high,	then	the	item	is	not	found	(return	-1)	
3. Compute	the	middle	position	in	the	array.	
4. If	the	item	at	the	middle	position	is	the	key,	return	that	position.	
5. If	the	item	at	the	middle	position	is	greater	than	the	key,	repeat	from	step	2,	on	the	left	sub-array.	
6. If	the	item	at	the	middle	position	is	less	than	the	key,	repeat	from	step	2	on	the	right	sub-array.	

	
For	steps	5	and	6,	if	using	recursion,	the	“repeat”	part	is	done	by	calling	your	binary	search	function	with	
new	argument	values	for	low	or	high.	
	
We	will	write	a	recursive	version	of	binary	search.	
	

1. Get	the	starter	code	and	paste	it	into	a	new	project.	
2. Find	the	4-argument	binary_search	function.		Notice	that	the	arguments:	the	vector	to	search,	

the	key	to	look	for,	the	lower	bound,	and	the	upper	bound.	
3. Edit	this	function	to	implement	binary	search	correctly.		Hint:	Use	lots	of	cout	statements	as	you	

are	writing	the	code.		It	will	help	you	understand	the	recursion	better	if	you	can	see	exactly	what	
the	function	is	doing.		For	instance,	try	printing	out	the	arguments	at	the	top	of	the	function,	
printing	out	“base	case”	or	“recursive	case”	when	those	cases	are	entered	into,	and	printing	out	
“returning”	whenever	the	function	returns.	

4. Change	the	code	so	you	can	control	the	starting	size	of	the	array.		Experiment	with	various	sizes	of	
the	array,	and	see	if	you	can	discover	how	many	calls	will	be	made	to	binary_search	in	the	worst	
case,	for	an	arbitrary	sorted	array.	


