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Homework 1 
 
In this homework (and in this class in general), log = base-2 logarithm unless otherwise 
specified. 
 

1. Abstract data types 
 
You are designing an ADT called Time to represent a time of day; that is, the time that 
you’d see on a clock on the wall.  Conceptually, a time consists of an hour component, 
and minute component, and an AM/PM designation.  A Time has no associated date or 
day of the week.  In this question you will think about designing this data type in two 
different ways. 
 
Recall that an ADT is primarily defined by what the operations are that it can do, and 
now how it does those operations.  Assume the operations we care about are as follows: 
 
- Get the hour component of the time. 
- Get the minute component of the time. 
- Get the AM/PM component of the time. 
- Compare this Time instance against another Time instance to figure out which one is 
earlier. 
- Get the different in minutes between this Time instance and another Time instance.  
(e.g., the difference between 1pm and 2:30pm is 90 minutes). 
 
For instance, if we were designing a C++ class for this, the public portion might look like 
this: 
 
class Time  
{ 
  public: 
  int getHour() const; 
  int getMinute() const; 
  string getAMorPM() const; 
  bool isEarlier(const Time & otherTime) const; 
  int differenceInMinutes(const Time & otherTime) const; 
} 
 
(a) Describe two different ways of implementing this ADT in terms of what variables 
(and corresponding types) you would use to implement the private section of the Time 
class.  There are a number of different implementations you can choose --- try to pick 
one that could make certain operations easier or more straightforward to implement, 
and then pick another that makes a different group of operations easier to implement. 



 
(b) For each of your implementations, describe how you would implement each of the 
five operations above.  You don’t need to write C++ code (but you can if you want to); a 
sentence or phrase or two for each operation is fine. 
 
(c) Contrast your two implementations in terms of which operations are easier or more 
straightforward to implement in one of your designs, and which are easier or more 
straightforward to implement in your other design. 
 

2. Big-oh ranking 
 
Order the following big-oh complexities in increasing order (from slowest to fastest).  It 
is possible some of them are actually in the same complexity category.  If that is the 
case, make it clear which ones have the same complexity. 
 

n2, 3n, √𝑛, 1, n*log(n), 2n, n!, 2log(n), n3, n, n2log(n), log(n), 2n+1 
 

3. Big-oh complexity 
 
Assume each formula below represents the running time T(n) of some algorithm.  For 
each formula, give the lowest big-oh complexity possible (the tightest bound). 
 
Here, log represents the base-2 logarithm. 
 
(a) 5 + n2 + 25n 
(b) 50n + 10n1.5 + 5n*log(n) 
(c) 3n + 5n1.5 + 2n1.75 

(d) n2log(n) + n*log(n) + n*(log(n))2 
(e) 2n + n10 
(f) n*log(n) + 8n + n*(log(n))2 
 

4. Big-oh complexity proof 
 
Assume we have analyzed an algorithm and its run time is determined to be 
 
T(n) = n3 + 2n + 3 
 
(a) What is the big-oh running time of this algorithm?  (This should be easy.)  Call this 
function f(n). 
 
(b) Now, prove your answer.   



In other words, find a constant c and a number n0 such that for all numbers n >= n0, T(n) 
<= c * f(n).  Draw a graph showing T(n) and c * f(n).  Label your axes and where n0 is. 
 

5. Big-oh complexity analysis of a recursive algorithm 
 
Assume we have an recursive algorithm whose running time we’ve determined to be 
T(n) = 2T(n/2) + 1, with T(1) = 1.  Determine the non-recursive T(n) for this algorithm 
(using the iterative substitution method from class), and then determine the big-oh 
running time.  Show your work. 
 

6. Big-oh complexity analysis of code 
 
Determine the big-oh running time for the following algorithms in terms of n.  (No 
justification needed.) 
 

a. Matrix addition: 
 
for (int i = 0; i < n; i++) 
{ 
  for (int j = 0; j < n; j++) 
  { 
    c[i][j] = a[i][j] + b[i][j]; 
  } 
} 
 

b. Matrix multiplication: 
 
for (int i = 0; i < n; i++) 
{ 
  for (int j = 0; j < n; j++) 
  { 
    c[i][j] = 0; 
    for (int k = 0; k < n; k++) 
    { 
      c[i][j] += a[i][k] * b[k][j]; 
    } 
  } 
} 
 

c.  
while (n >= 1) 
{ 
  n = n/2; 
} 
 



d.  
x = 1; 
for (int i = 1; i <= n-1; i++) 
{ 
  for (int j = 1; j <= x; j++) 
  { 
    cout << j << endl; 
  }  
  x = x * 2; 

      } 
 


