
Dijkstra’s Algorithm (book page 655)

void dijkstra(Graph g, Vertex start, Vertex finish)
{
 create min-priority queue Q

 for each vertex v in the graph:
 dist[v] = infinity
 prev[v] = undefined

dist[start] = 0
Q.insert(start, 0)

 while Q is not empty:
 u = Q.extract_minimum() # We now “visit” vertex u.

 if u == finish: break

 for each neighbor v of u:
 alt = dist[u] + weight(u, v)
 if alt < dist[v]
 dist[v] = alt
 prev[v] = u
 if Q.contains(v)

Q.decrease_priority(v, alt)
 else
 Q.insert(v, alt)

 Final path length is dist[finish].

Traverse prev[] array starting from prev[finish] in reverse order back
 to start vertex to get final path from start to finish.
}

Note:	during	the	for each neighbor v of u step,	the	algorithm	will	reconsider	nodes	it	has	already	
visited	before	(thereby	opening	the	possibility	of	a	cycle).		However,	for	a	situation	like	this,	dist[u] +
weight(u, v) will	always	be	bigger	than	dist[v],	so	the	cycles	will	be	ignored	anyway.		However,	
some	Disjktra’s	Algorithm	implementations	explicitly	keep	track	of	which	vertices	have	been	visited	
already	and	modify	the	for each neighbor v of u	step	to	skip	over	any	vertex	v	that	has	already	
been	visited	earlier.	

