
Functional	Dependencies

Chapter	3

1

Halfway	done!
• So	far:
– Relational	algebra	(theory)
– SQL	(practice)
– E/R	modeling	(theory)
– HTML/Flask/Python	(practice)
– Midterm	(super	fun!)

• Next	up:
– Database	design	theory	(builds	on	E/R	modeling,	more	
theory)

– Data	structures	(practice)
– Query	optimization,	transactions	(theory	+	practice!)
– Non-relational	DB	models	(NoSQL

2

More	DB	design	theory

• E/R	diagrams	can	still	leave	you	with	
redundancies	in	your	schemas.

• Redundancy:	Storing	something	twice	in	the	
DB	when	you	only	need	to	store	it	once.

3

4

5

Often,	our	first	attempts	at	DB	schemas	can	be	
improved,	especially	by	eliminating	redundancy.

Functional	dependencies	 help	us	do	this.

6

What	is	a	FD?

• Statement	of	the	form:
– If	two	tuples	of	relation	R	agree	on	attributes	
A1…An,	then	they	must	agree	on	tuples	B1…Bm.

–We	say	A1 through	An functionally	determine	B1
through	Bm.

– i.e.,	if	you	have	two	rows	in	a	table,	and	the	two	
rows	all	have	the	same	values	for	A1…An,	then	the	
rows	must	have	the	same	values	for	B1…Bm.

8

What	is	a	FD?

• Write	as	X	->	Y
– X	and	Y	are	sets	of	attributes	from	a	relation.
– Read:	"X	functionally	determines	Y"

• Intuitive	definitions:
– "If	you	know	X,	you	can	determine	Y."
– "For	each	X,	there	can	be	only	one	Y.”

• Guidelines:
– Often	Y	is	a	single	attribute,	though	it	doesn’t	
have	to	be.

9

What	is	a	FD?

• If	every	instance	of	a	relation	will	make	a	FD	
true,	then	the	relation	satisfies the	FD.
– Determined	from	real-world	knowledge,	not	DB.

• An	FD	is	a	constraint	on	a	single	relational	
schema	(one	table).
– It	must	hold	on	every	instance	of	the	relation.
– Therefore,	you	cannot	deduce	an	FD	from	a	
relational	instance.

11

StudentR# StudentName CRN ProfName Title Grade
101 Harry	Potter 1 Snape Potions A
101 Harry	Potter 2 McGonagall Transfiguration B
101 Harry	Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione	Granger 2 McGonagall Transfiguration A
103 Ronald	Weasley 1 Snape Potions B

What	are	the	FDs?

15

StudentR# StudentName CRN ProfName Title Grade
101 Harry	Potter 1 Snape Potions A
101 Harry	Potter 2 McGonagall Transfiguration B
101 Harry	Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione	Granger 2 McGonagall Transfiguration A
103 Ronald	Weasley 1 Snape Potions B

StudentR#	->	StudentName
CRN	->	ProfName
CRN	->	Title
StudentR#	CRN	->	Grade

16

StudentR# StudentName CRN ProfName Title Grade
101 Harry	Potter 1 Snape Potions A
101 Harry	Potter 2 McGonagall Transfiguration B
101 Harry	Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione	Granger 2 McGonagall Transfiguration A
103 Ronald	Weasley 1 Snape Potions B

Is	StudentR#	->	StudentName a	FD?

Is	CRN	->	Grade	a	FD?

17

Where	do	FDs	come	from?

• "Key-ness"	of	attributes
• Domain	and	application	constraints
• Real	world	constraints

18

Definition	of	Keys

• FDs	allow	us	to	formally	define	keys
• A	set	of	attributes	{A1,	A2,	…,	An}	is	a	key for	
relation	R	if	it	satisfies:

Uniqueness:	{A1,	A2,	…,	An}	functionally	determine	
all	the	other	attributes	of	R

Minimality:	no	proper	subset	of	{A1,	A2,	…,	An}	
functionally	determines	all	other	attributes	of	R.

19

StudentR# StudentName CRN ProfName Title Grade
101 Harry	Potter 1 Snape Potions A
101 Harry	Potter 2 McGonagall Transfiguration B
101 Harry	Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione	Granger 2 McGonagall Transfiguration A
103 Ronald	Weasley 1 Snape Potions B

What	are	the	keys?

20

Two	things	you	already	know	and	one	
thing	you	don't:

• A	relation	can	have	more	than	one	key.
• Usually	one	key	is	known	as	the	primary	key.
• FDs	have	nothing	to	do	with	primary	keys,	just	
keys.

22

Another	way	to	think	about	FDs

• For	a	FD	A1 A2 … An ->	B1 B2 … Bm:
– Equivalent	to	the	set	of	FDs
• A1 A2 … An ->	B1
• A1 A2 … An ->	B2		 (etc,	through)
• A1 A2 … An ->	Bm:

– You	should	be	able	to	imagine	a	function
f(A1,	A2,…,An)	that	computes	a	unique	B1 (or	B2…).

23

Superkeys

24

Superkeys

• A	superkey (superset	of	a	key)	is	a	set	of	
attributes	that	contains	a	key.

• In	other	words,	a	superkey satisfies	the	
uniqueness	part	of	the	key	definition,	but	may	
not	satisfy	the	minimality part.

25

StudentR# StudentName CRN ProfName Title Grade
101 Harry	Potter 1 Snape Potions A
101 Harry	Potter 2 McGonagall Transfiguration B
101 Harry	Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione	Granger 2 McGonagall Transfiguration A
103 Ronald	Weasley 1 Snape Potions B

What	are	the	keys	and	superkeys?

27

With	a	partner

• Consider	a	relation	about	people	in	the	USA,	
including	name,	SSN,	street	address,	city,	
state,	zip	code,	area	code,	and	7-digit	phone	
number.	

• What	FDs	would	you	expect	to	hold?
• What	are	the	keys	for	this	relation?
• Hints:	Can	an	area	code	straddle	two	states?		
Can	a	zip	code	straddle	two	area	codes?

28

Rules	for	Manipulating	FDs

• Learn	how	to	reason	about	FDs
• Define	rules	for	deriving	new	FDs	from	a	given	
set	of	FDs

• Example:	R(A,	B,	C)	satisfies	FDs	A->B,	B->C.
–What	others	does	it	satisfy?	
– A	->	C
–What	is	the	key	for	R?	
– A	(because	A->B	and	A->C)

29

Review

• FD:		X	->	Y:	for	each	X,	there	is	only	one	Y.
– Knowing	the	value	of	X	tells	you	the	value	of	Y.

• Superkey:	a	set	of	attributes	that	functionally	
determines	all	of	the	other	attributes	of	a	
relation.

• Key:	a	superkey that	is	also	minimal	(can't	remove	
any	attributes	from	it	and	still	functionally	
determine	all	the	other	attributes).

30

Equivalence	of	FDs
• Why?
– To	derive	new	FDs	from	a	set	of	FDs

• An	FD	F	follows from	a	set	of	FDs	T	if	every	
relation	instance	that	satisfies	all	the	FDs	in	T	also	
satisfies	F
– A	à C	follows	from	T	=	{AàB,	BàC}

• Two	sets	of	FDs	S	and	T	are	equivalent if	each	FD	
in	S	follows	from	T	and	each	FD	in	T	follows	from	
S
– S	=	{AàB,	BàC,	AàC}	and	T	=	{AàB,	BàC}	are	
equivalent

31

Splitting	and	Combining	FDs
• The	set	of	FDs
– A1	A2	A3…An	à B1
– A1	A2	A3…An	à B2
– …
is	equivalent	to	the	FD
– A1	A2	A3…An	à B1	B2	B3	…	Bm

• This	equivalence	implies	two	rules:
– Splitting	rule
– Combining	rule
– These	rules	work	because	all	the	FDs	in	S	and	T	have	
identical	left	hand	sides

32

Splitting	and	Combining	FDs

• Can	we	split	and	combine	left	hand	sides	of	
FDs?

• Consider	a	relation	Flights(airline,	flightNum,	
source,	dest)

• What	are	FDs?
• Does	the	FD	“flightNum ->	source”	follow	from	
“airline	flightNum ->	source”?
– No!

33

Triviality	of	FDs
• A	FD	A1	A2…An	à B1	B2…Bm is	
– Trivial if	the	B’s	are	a	subset	of	the	A’s

– Non-trivial if	at	least	one	B	is	not	among	the	A’s	

– Completely non-trivial if	none	of	the	B’s	are	
among	the	A’s

–Most	real-world	FDs	are	expressed	completely	
non-trivially.

34

Triviality	of	FDs

• What	good	are	trivial	and	non-trivial	FDs?
– Trivial	dependencies	are	always	true
– They	help	simplify	reasoning	about	FDs

• Trivial	dependency	rule:	The	FD	A1	A2…An	à B1	B2…Bm is	equivalent	 to	
the	FD	A1	A2…An	à C1	C2...Ck,	where	 the	C’s	are	those	B’s	that	are	not	
A’s,	i.e.

• Example:		Suppose	 this	FD	holds:					SSN	->	birthday	SSN
Then	this	FD	also	holds:		SSN	->	birthday

35

• Find	a	trivial	FD:

36

StudentR# StudentName CRN ProfName Title Grade
101 Harry	Potter 1 Snape Potions A
101 Harry	Potter 2 McGonagall Transfiguration B
101 Harry	Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione	Granger 2 McGonagall Transfiguration A
103 Ronald	Weasley 1 Snape Potions B

Review

• A	set	of	FDs	S	follows from	another	set	of	FDs	T	iff
all	the	FDs	in	S	are	implied	by	those	in	T.
– (e.g.,	through	the	splitting/combining	rule,	transitivity,	
etc)

• Two	sets	of	FDs	are	equivalent if	each	set	follows	
from	the	other.

37

Closure	of	a	set	of	attributes

• Suppose	you	have	a	set	of	attributes	{A1,	…,	
An}	and	a	set	of	FDs	S.

• The	closure	of	{A1,	…,	An}	under	S	is	the	set	of	
attributes	B	such	that
– every	relation	in	S	also	satisfies	A1…An	->	B.

• Intuitive	def'n:	B	is	the	largest	set	of	attributes	
that	we	can	deduce	from	knowing	A1,	…,	An.

• Closure	of	{A1,…An}	denoted	by	{A1,…An}+

38

Closure	of	Attributes:	Algorithm

1. Use	the	splitting	rule	so	that	each	FD	in	S	has	
one	attribute	on	the	right (always	possible).

2. Set	X	=	{A1,	A2	…,	An}	
3. Find	a	FD	B1	B2…Bk	à C	in	S	such	that	
{B1	B2	…	Bk}						X	but	C					X
4. Add	C	to	X
5. Repeat	the	last	two	steps	until	you	can’t	find	

C
39

Why	is	the	algorithm	correct?	
Read	3.2.5	in	textbook	

Closure	of	Attributes:	Example

• Suppose	a	relation	R(A,	B,	C,	D,	E,	F)	has	FDs:
– AB	à C,	BC	à AD,	D	à E,	CF	à B

• Find	the	closures	of:
– {A,	B}
– {B,	C,	F}
– {A,	F}
under	the	FDs	above.

40

Note	about	closure

• The	closure	of	a	set	of	attributes	will	be	
different	for	differing	sets	of	FDs.

• R(A,	B,	C,	D);	with	FDs	A	->	B	and	C	->	D.
–What	is	{A,	B}+?

• R(A,	B,	C);	with	FDs	A	->	BC	and	C ->	D
–What	is	{A,	B}+?

• Takeaway:	Closure	of	a	set	of	attributes	is	
meaningless	without	a	set	of	FDs.

41

Why	compute	closures?

• Can	test	whether	any	FD	follows	from	a	set	of	
other	FDs.
– Say	we	know	a	set	of	FDs	S,	and	we	want	to	check	if	
a	"new"	FD	A1…An	->	B	follows	from	S.

– Simply	check	if	B	is	in	{A1,	A2,	…,	An}+ under	S.

• To	prove	the	correctness	of	rules	for	
manipulating	FDs.

• Can	compute	keys	algorithmically.

49

Algorithm	for	computing	keys

• Recall	a	superkey is	a	set	of	attributes	that	
functionally	determines	all	the	other	
attributes.

• The	closure	of	a	set	of	attributes	A1…An	under	
a	set	of	FDs	gives	you	all	the	other	attributes	
in	R	that	can	be	functionally	determined	from	
knowing	A1…An.

• Let’s	figure	out	the	connection	between	
superkeys and	attribute	closure.	

52

Connection	between	closure	and	keys
• Suppose	we	have	a	relation	R(A1,	A2,	…,	An).
• A	superkey is	a	set	of	attributes	that	functionally	
determines	all	the	other	attributes	of	a	relation.
– Set	X	is	a	superkey for	R	iff … ?
• X+ =	{A1,	A2,	…,	An}

• A	key	is	a	superkey that	is	also	minimal	(can’t	
leave	any	attributes	out	of	it):
– Set	X	is	a	minimal	superkey (a	key)	iff … ?
• For	any	attribute	A	in	X,	(X-{A})+ ≠ {A1,	A2,	…,	An}

53

(Brute-force)	algorithm	for	computing	
keys

• Given:
– A	relation	R	(A1,	A2,	…,	An)	
– The	set	of	all	FDs	S	that	hold	in	R

• Find:
– Compute	all	the	keys	of	R

1. For	every	subset	K	of	{A1,	A2,	…,	An}	compute	its	
closure

2. If	K+ =	{A1,	A2,	…	An}	and	for	every	attribute	A,	
(K	– {A})+ is	not	{A1,	A2,	…	An},	then	output	K	as	
a	key

54

Students	and	Profs

• Suppose	we	have	one	single	relation	with	
attributes:
– R#
– Student	Name
– ProfID (ID	of	professor	teaching	a	class	with	the	
student)

– ProfName
– AdvisorID
– AdvisorName

55

Armstrong’s	Axioms

• We	can	use	closures	of	
attributes	to	determine	if	any	
FD	follows	from	a	given	set	of	
FDs

• Armstrong's	axioms:	complete	
set	of	inference	rules	from	
which	it	is	possible	to	derive	
every	FD	that	follows	from	a	
given	set.

56

Not	the	right	W.	W.	Armstrong.
This	 is	Warwick	Windridge
Armstrong,	an	Australian	
cricketer.	 	He	did	not	 invent	these	
axioms. They	were	originated	 by	
William	Ward	Armstrong,	who	is	
Canadian,	and	does	not	have	a	
picture	on	Wikipedia.

Armstrong’s	Axioms

• Reflexivity

– E.g.	ssn name	à ssn
– (always	gives	you	a	trivial	FD)

• Augmentation

– E.g.	ssnà name							can	give	you				
ssn grade	à name	grade

57

Y ⊆ X⇒ X→Y

X→Y ⇒ XW →YW

X,	Y,	and	Z	are	sets	
of	attributes.

Armstrong's	Axioms

• Transitivity

e.g.	if	ssnà address		and	address	à tax-rate
then

ssn à tax-rate

58

X→Y
Y → Z

"
#
$
⇒ X→ Z

X,	Y,	and	Z	are	
sets	of	attributes.

Note	on	notation
• Relation	Schema:	R(A1,	A2,	A3):	parentheses	
surround	attributes,	attributes	separated	by	
commas.	

• Set	of	attributes:	{A1,	A2,	A3}:	curly	braces	
surround	attributes,	attributes	separated	by	
commas

• FD:	A1	A2	à A3:	no	parentheses	or	curly	braces,	
attributes	separated	by	spaces,	arrows	separates	
left	hand	side	and	right	hand	side

• Set	of	FDs:	{A1	A2	à A3,	A2	à A1}:	curly	braces	
surround	FDs,	FDs	separated	by	commas

64

Computing	Closures	of	FDs

• Many	times	we	are	given	a	set	of	FDs	and	are	
interested	in	learning	if	there	is	a	simpler	set	
of	FDs	that	has	all	the	same	implications	that	
the	original	set	does.

• To	compute	the	closure	of	a	set	of	FDs,	
repeatedly	apply	Armstrong’s	Axioms	until	you	
cannot	find	any	new	FDs.

67

Examples	of	Computing	Closures	of	
FDs

• (Let	us	include	only	completely	non-trivial	FDs	
in	these	examples,	with	a	single	attribute	on	
the	right)

• F	=	{AàB,	BàC}
• {F}+ =	??	

68

Examples	of	Computing	Closures	of	
FDs

• (Let	us	include	only	completely	non-trivial	FDs	
in	these	examples,	with	a	single	attribute	on	
the	right)

• F	=	{AàB,	BàC}
• {F}+ =	{AàB,	BàC,	AàC,	ACàB,	ABàC}

69

Examples	of	Computing	Closures	of	
FDs

• (Let	us	include	only	completely	non-trivial	FDs	
in	these	examples,	with	a	single	attribute	on	
the	right)

• F	=	{ABàC,	BCàA,	ACàB}
• {F}+ =	??	

70

Examples	of	Computing	Closures	of	
FDs

• (Let	us	include	only	completely	non-trivial	FDs	
in	these	examples,	with	a	single	attribute	on	
the	right)

• F	=	{ABàC,	BCàA,	ACàB}
• {F}+ =	{ABàC,	BCàA,	ACàB}

71

Examples	of	Computing	Closures	of	
FDs

• (Let	us	include	only	completely	non-trivial	FDs	
in	these	examples,	with	a	single	attribute	on	
the	right)

• F	=	{AàB,	BàC,	CàD}
• {F}+ =	??	

72

Examples	of	Computing	Closures	of	
FDs

• (Let	us	include	only	completely	non-trivial	FDs	
in	these	examples,	with	a	single	attribute	on	
the	right)

• F	=	{AàB,	BàC,	CàD}
• {F}+ =	{AàB,	BàC,	CàD,	AàC,	AàD,	BàD,	
…}

73

Closures	of	Attributes	vs Closure	of	FDs
• Closure	of	attributes:
– Takes	a	set	of	attributes	A	and	a	set	of	FDs	S.
– Produces	a	set	of	attributes	(all	the	attribs that	can	be	
functionally	determined	from	A,	given	S).

– Used	for	computing	keys,	checking	if	an	FD	follows	
from	a	set	of	FDs.

• Closure	of	a	set	of	FDs:
– Takes	a	set	of	FDs.
– Produces	a	set	of	FDs	(all	the	FDs	that	follow	from	S).
– Can	be	used	for	verifying	a	minimal	basis,	but	also	can	
verify	by	using	closure	of	attributes.

75

Basis	Set	of	FDs

77

• In	linear	algebra,	a	basis	
is	the	smallest	set	of	
linearly	independent	
vectors	such	that	you	
can	build	any	other	
vector	out	of	the	basis	
vectors.

Basis	Set	of	FDs

78

• In	databases,	a	(minimal)	
basis for	a	set	of	FDs	S	is	the	
smallest	set	of	FDs	that	is	
equivalent	to	S.
– That	is,	all	of	the	FDs	in	S	
follow	from	the	basis	set	of	
FDs.

Minimal	basis	

79

• Given	a	set	of	FDs	S,	a	minimal	basis	for	S	is	
another	set	of	FDs	B	where:
– All	the	FDs	in	B	have	singleton	right	sides.
– If	any	FD	is	removed	from	B,	the	result	is	no	longer	a	
basis.

– If	we	remove	any	attribute	from	the	left	side	of	any	FD	
in	B,	the	result	is	no	longer	a	basis.

• Like	in	linear	algebra,	there	can	be	multiple	
minimal	bases	for	a	set	of	FDs,	though	unlike	in	
linear	algebra,	two	minimal	bases	for	a	set	of	FDs	
may	be	different	sizes.

Example	of	Minimal	Basis

• R(A,	B,	C)	is	a	relation	such	that	each	attribute	
functionally	determines	the	other	two	
attributes

• What	are	the	FDs	that	hold	in	R	and	what	are	
the	minimal	bases?
– (Assume	only	one	attribute	on	the	right-hand	side,	
only	non-trivial	FDs)

80

Example	of	Minimal	Basis
• R(A,	B,	C)	is	a	relation	such	that	each	attribute	
functionally	determines	the	other	two	attributes

• What	are	the	FDs	that	hold	in	R	and	what	are	the	
minimal	bases?
– (Assume	only	one	attribute	on	the	right-hand	side,	
only	non-trivial	FDs)

• FDs:	AàB,	AàC,	BàA,	BàC,	CàA,	CàB,	ABàC,	
BCàA,	ACàB

• Minimal	Bases:	{AàB,	BàA,	BàC,	CàB},
{AàB,	BàC,	CàA},	etc.

83

