
Query	Optimization

1

Query	optimization

• Given	an	SQL	query,	the	query	optimizer	tries	
to	figure	out	the	order	of	operations	that	will	
make	the	query	run	the	fastest.

• Possible	because	usually	there	is	more	than	
one	way	to	run	a	query.

2

Why	query	optimization?

• SQL	is	a	declarative	language.
– SQL	only	says	what to	retrieve	from	the	DB,	not	
the	details	of	how.

– Unlike	most	programming	languages	(though	
there	are	other	declarative	languages).

• Good	query	optimization	can	make	a	big	
difference.

3

Example

• Students(R#,	First,	Last)
• Enrolled(R#,	CRN)
• SELECT	First,	Last
FROM	Students	NATURAL	JOIN	Enrolled
WHERE	CRN=12345

• πF,L (σ CRN=12345 (S					E))	

4

Example

• SELECT	First,	Last
FROM	Students	NATURAL	JOIN	Enrolled
WHERE	CRN=12345

Student Enrolled

5

Example

• SELECT	First,	Last
FROM	Students	NATURAL	JOIN	Enrolled
WHERE	CRN=12345

Student Enrolled Student Enrolled

Canonical	Form

6

Canonical	Form

• Make	all	JOINs	explicit	with	WHERE	clauses.
– S	NatJoin T	==	S	Join	T	WHERE…
– S	Join	T	ON	…	==	S	Join	T	WHERE…

• Perform	selections	and	projections	as	early	as	
possible.

7

8

9

Relational	algebra

• How	do	we	know	
πF,L (σ CRN=12345 (S					E))	

is	equal	to
πF,L (S						(σ CRN=12345 (E)))			?

• Yay	172	proofs!

10

What	are	the	algorithms	used?

• SELECT	First,	Last
FROM	Students	NATURAL	JOIN	Enrolled
WHERE	CRN=12345

Student Enrolled

Join	algorithms	
(later	today)	------à

ß----- Selection	 algorithms	
(sequential	 scan	or	use	 index)

Query	optimization	steps

• Parse	query	into	internal	form	(e.g.,	parse	tree)
• Convert	to	canonical	form
• Generate	a	set	of	“query	plans”	(a	particular	
ordering	of	steps	and	algorithms	for	answering	
the	query)

• Estimate	the	cost	of	each	query	plan.
• Pick	the	best	one.

13

Sqlite query	plan	demo

• EXPLAIN	QUERY	PLAN

• SCAN	=	full	table	scan
• SEARCH	=	only	a	subset	of	the	rows	are	visited

14

Back	to	query	optimization

• Projections	and	selections
– Perform	them	early	(but	carefully)	to	reduce
• number	of	tuples
• size	of	tuples	(remove	attributes)

– Project	out	(remove)	all	attributes	except	those	
requested	or	required	(e.g.,	needed	for	joins)

15

How	does	a	join	work?

• Three	main	algorithms:
– Nested	loop	join
– Sort-merge	join
– Hash	join

16

Nested	loop	join

For	each	tuple	r	in	R	do
For	each	tuple	s	in	S	do
If	r	and	s	satisfy	the	join	condition
Then	output	the	tuple	<r,s>

17

Sort-Merge	join

• Assume	we	want	to	join	R	and	S	on	some	
attribute	A.

• Sort	both	R	and	S	by	A.
• Perform	two	simultaneous	linear	scans	of	R	
and	S.
–Works	well	assuming	no	duplicate	values	of	A.

18

Hash	join

• Join	R	and	S	on	A.
• Make	a	hash	table	of	the	smaller	relation,	
mapping	A	to	the	appropriate	row(s)	of	R	(or	
S).

• Scan	the	larger	relation	to	find	the	relevant	
rows	using	the	hash	table.
– Only	useful	if	smaller	relation	maps	A	to	>1	rows	
of	R.

19

Equivalence	of	expressions

• Natural	joins:
– commutative
– associative

• How	can	we	figure	out	how	many	possible	
orderings	there	are	to	join	the	tables?

RSSR !"!" =
)()(TSRTSR !"!"!"!" =

20

Equivalence	of	expressions

• Natural	joins:
– commutative
– associative

• How	can	we	figure	out	how	many	possible	
orderings	there	are	to	join	the	tables?
– Each	join	is	a	binary	tree.

RSSR !"!" =
)()(TSRTSR !"!"!"!" =

21

Equivalence	of	expressions

• Natural	joins:
– commutative
– associative

• How	can	we	figure	out	how	many	possible	
orderings	there	are	to	join	the	tables?
– Each	join	is	a	binary	tree.
– #	of	binary	trees	with	n	nodes	=	O(4^n)	=	Catalan	
numbers.		(This	only	considers	associativity).

RSSR !"!" =
)()(TSRTSR !"!"!"!" =

22

Why	care?

23

Picking	good	join	orders

• Query	optimizer	generates	a	few	potential	
orders
– Doesn't	evaluate	all	O(4^n)	possibilities.
– Prefers	deep	trees	over	bushy	trees.		(Why?)
• Bushy	trees	require	lots	of	extra	temporary	tables	to	
store	intermediate	results.		A	maximally-deep	tree	only	
requires	one	(or	maybe	two)	temporary	tables	that	we	
can	keep	overwriting.
• How	many	left-deep	trees	are	there	for	n	relations?

24

• Query	optimizer	tries	to	estimate	the	cost	for	
each	query	plan,	relying	on
– Statistics	maintained	for	relations	and	indexes	
(size	of	relation,	size	of	index,	number	of	distinct	
values	in	columns,	etc)

– Formulas	to	estimate	selectivity	of	predicates	(the	
probability	that	a	randomly-selected	row	will	be	
true	for	a	predicate)

– Formulas	to	estimate	CPU	and	I/O	costs	of	
selections,	projections,	joins,	aggregations,	etc.

25

