
Transactions

1

Why	Transactions?

• Database	systems	are	normally	being	accessed	
by	many	users	or	processes	at	the	same	time.
– Both	queries	and	modifications.

• Unlike	operating	systems,	which	support		
interaction	of	processes,	a	DMBS	needs	to	
keep	processes	from	troublesome	
interactions.

2

Transactions

• A	single	"unit	of	work"	in	a	DBMS.
• Can	comprise	more	than	one	SQL	command,	
but	each	individual	command	does	not	stand	
on	its	own.

3

Statement	of	Problem

• How	do	we	allow	concurrent	running	of	
independent	transactions	while	preserving	
database	integrity?

• Additionally,	we	want	
– good	response	time	and	minimal	waiting.
– correctness	and	fairness.

5

6

Another	example:	"lost	update"	
problem

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N)

time

9

Concurrency

• Arbitrary	interleaving	can	lead	to	
– Temporary	inconsistency	(unavoidable)
– "Permanent" inconsistency	(bad!)

10

Example:	Bad	Interaction

• You	and	friend	each	take	$100	from	different	
ATMs	at	about	the	same	time.
– The	DBMS	had	better	make	sure	one	account	
deduction	doesn’t	get	lost.

• Compare:	An	OS	allows	two	people	to	edit	a	
document	at	the	same	time.		If	both	write,	
one’s	changes	get	lost.

11

Remember	ACID?

12

Remember	ACID?

13

ACID	Transactions

• We	want	transactions	 to	be:
– Atomic:	Whole	transaction	or	none	is	done.
– Consistent:	Database	constraints	preserved.
– Isolated:	It	appears	to	the	user	as	if	only	one	
transaction	executes	at	a	time.

– Durable:	Effects	of	a	transaction	survive	a	crash.

14

SQL	Transactions

• BEGIN TRANSACTION
• // do SQL here
• either COMMIT or ROLLBACK

15

COMMIT

• The	SQL	statement	COMMIT	causes	a	
transaction	to	complete.
– Any	database	modifications	are	now	permanent	in	
the	database.

16

ROLLBACK

• The	SQL	statement	ROLLBACK	also	causes	the	
transaction	to	end,	but	by	aborting.
– No	effects	on	the	database.

• Failures	like	division	by	0	or	a	constraint	
violation	can	also	cause	rollback,	even	if	the	
programmer	does	not	request	it.

17

Isolation	Levels

• SQL	defines	four	isolation	levels:	choices	about	
what	interactions	are	allowed	by	transactions	
that	execute	at	about	the	same	time.

• Only	one	level	(serializable)	gives	ACID	
transactions.

• Each	DBMS	implements	transactions	in	its	own	
way.

• Not	all	DBMS	implement	all	four	isolation	levels.

18

Let's	get	abstract

• database	- a	fixed	set	of	named	data	objects	
(A,	B,	C,	…)

• transaction	- a	sequence	of	read	and	write	
operations	(read(A),	write(B),	…)
– DBMS's	abstract	view	of	a	user	program

20

ACID	Transactions

• ACID	transactions are:
– Atomic :	Whole	transaction	or	none	is	done.
– Consistent :	Database	constraints	preserved.
– Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.

– Durable :	Effects	of	a	process	survive	a	crash.

21

Atomicity	of	Transactions

• Two	possible	outcomes	of	executing	a	
transaction:
– Xact might commit after	completing	all	its	actions
– or	it	could	abort (or	be	aborted	by	the	DBMS)	
after	executing	some	actions.

• DBMS	guarantees	that	Xacts are	atomic.
– From	user's	point	of	view:	Xact always	either	
executes	all	its	actions,	or	executes	no	actions	at	
all.

A

22

Mechanisms	for	Ensuring	Atomicity

• What	would	you	do?

A

24

Mechanisms	for	Ensuring	Atomicity

• One	approach:	LOGGING
– DBMS	logs	all	actions	so	that	it	can	undo	the	
actions	of	aborted	transactions.

• ~	like	black	box	in	airplanes	…

A

25

Mechanisms	for	Ensuring	Atomicity

• Logging	used	by	all	modern	systems.	
• Q:	why?

A

26

Mechanisms	for	Ensuring	Atomicity

• Logging	used	by	all	modern	systems.	
• Q:	why?
• A:	

– audit	trail	&
– efficiency	reasons

A

27

Transaction	Consistency

• "Database	consistency" - data	in	DBMS	is	
accurate	in	modeling	real	world	and	follows	
integrity	constraints

C

29

Transaction	Consistency

• “Transaction	Consistency”:	if	DBMS	consistent	
before	Xact (running	alone),	it	will	be	after	
also

• Transaction	consistency:	User’s	responsibility
– DBMS	just	checks	IC

consistent
database

S1

consistent
database

S2

transaction T

C

30

Transaction	Consistency	(cont.)

• Recall:	Integrity	constraints
– must	be	true	for	DB	to	be	considered	consistent
Examples:
1. FOREIGN	KEY	R.sid REFERENCES	S
2. BALANCE	>=	0

C

31

Transaction	Consistency	(cont.)

• System	checks	ICs	and	if	they	fail,	the	
transaction	rolls	back	(i.e.,	is	aborted).
– Beyond	this,	DBMS	does	not	understand	the	
semantics	of	the	data.

– e.g.,	it	does	not	understand	how	interest	on	a	
bank	account	is	computed

• This	is	the	user's	responsibility;	DB	cannot	do	
much	other	than	enforce	the	rules	and	
rollback	if	violated.

C

32

Isolation	of	Transactions

• Users	submit	transactions,	and	
• Each	transaction	executes	as	if	it	was	running	
by	itself.
– Concurrency	is	achieved	by	DBMS,	which	
interleaves	actions	(reads/writes	of	DB	objects)	of	
various	transactions.

• Q:	How	would	you	achieve	that?

I

33

Isolation	of	Transactions

• A:	Many	methods	- two	main	categories:
• Pessimistic	– don’t	let	problems	arise	in	the	
first	place

• Optimistic	– assume	conflicts	are	rare,	deal	
with	them	after	they	happen.

I

34

Example

• Consider	two	transactions	 (Xacts):
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

• 1st	xact transfers	$100	from	B’s	account	to	A’s
• 2nd	credits	both	accounts	with	1%	interest.
• Assume	at	first	A	and	B	each	have	$1000.		What	are	
the	legal	outcomes	of	running	T1	and	T2?

I

35

Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

• many	- but	A+B	should	be:	$2000	*	1.01	=	$2020
• There	is	no	guarantee	that	T1	will	execute	before	T2	
or	vice-versa,	if	both	are	submitted	together.		But,	the	
net	effect	must	be	equivalent	to	these	two	
transactions	running	serially	in	some	order.

• What	are	the	legal	ending	values	for	the	accounts?

I

36

Example	(Contd.)
• Legal	outcomes:	A=1111,B=909	or	A=1110,B=910
• Consider	a	possible	interleaved	schedule:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

• This	is	OK	(same	as	T1;T2).		But	what	about:
T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

I

37

Example	(Contd.)
• Legal	outcomes:	A=1111,B=909	or	A=1110,B=910
• Consider	a	possible	interleaved	schedule:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

• This	is	OK	(same	as	T1;T2).		But	what	about:
T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

• Result:	A=1111,	B=910;	A+B	=	2021,	bank	loses	$1
• The	DBMS’s	view	of	the	second	schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

I

38

Anomalies	with	Interleaved	Execution

• Reading	uncommitted	data	(WR	Conflicts,	"dirty	
reads"):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

I

44

Anomalies	with	Interleaved	Execution

• Reading	uncommitted	data	(WR	Conflicts,	"dirty	
reads"):

• Because	T1	ends	up	aborting,	the	highlighted	R(A)	is	
reading	an	incorrect	value	for	A.

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

I

45

Anomalies	with	Interleaved	Execution

• Nonrepeatable reads	(RW	Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

46

Anomalies	with	Interleaved	Execution

• Nonrepeatable reads	(RW	Conflicts):

• Transactions	always	must	appear	to	be	isolated,	so	the	
two	R(A)	should	return	the	same	value.		

• With	a	W(A)	in	between,	the	DB	may	or	may	not	return	
the	same	R(A)	both	times.

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

47

Anomalies	with	Interleaved	Execution

• Phantom	read:	Special	case	of	a	non-repeatable	read	
where	the	set	of	rows	returned	by	the	R(A)	differs.

• Some	people	define	a	“non-repeatable	read”	to	occur	
when	A	is	a	single	value	from	a	single	row,	and	a	
“phantom	read”	when	A	is	a	set	of	rows.

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

48

Anomalies	(Continued)

• Overwriting	uncommitted	data	(WW	conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

I

49

Anomalies	(Continued)

• Overwriting	uncommitted	data	(WW	conflicts):

• Two different WW conflicts here.

T1: W(A), W(B), C
T2: W(A), W(B), C

I

50

Isolation	Levels

83

• SET	TRANSACTION	
ISOLATION	LEVEL	<level>

• (do	after	BEGIN	TRANSACTION)

84

(Review)	Goal:	ACID	Properties

• ACID	transactions are:
– Atomic :	Whole	transaction	or	none	is	done.
– Consistent :	Database	constraints	preserved.
– Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.

– Durable :	Effects	of	a	process	survive	a	crash.

85

What	happens	if	system	crashes	between	commit
and	flushing	modified	data	to	disk	?

Problem	definition

• Records	are	on	disk
• for	updates,	they	are	copied	in	memory
• and	flushed	back	on	disk,	at	the	discretion	of	
the	O.S.!
– (although	you	can	force	it)

D

86

Problem	definition

• Records	are	on	disk
• for	updates,	they	are	copied	in	memory
• and	flushed	back	on	disk,	at	the	discretion	of	
the	O.S.!
– (although	you	can	force	it)

• Solution:	Write-ahead	log
– All	modifications	are	written	to	a	log	before	they	
are	applied	to	the	DB.

D

87

Durability	- Recovering	From	a	Crash

• At	the	end	– all	committed	updates	and	only	
those	updates	are	reflected	in	the	database.
– All	active	Xacts at	time	of	crash	are	aborted	when	
system	comes	back	up.

• Some	care	must	be	taken	to	handle	the	case	
of	a	crash occurring	during	the	recovery
process!	

D

99

