Foreigh Key Constraints

Foreign key: a rule that a value appearing in one relation must
appear in the key component of another relation.

— aka values for certain attributes must "make sense."

— Potter example: Every professor who is listed as teaching a course in the
Courses relation must have an entry in the Profs relation.

How do we express such constraints in relational algebra?

Consider the relations Courses(crn, year, name, proflast, ...) and
Profs(last, first).

We want to require that every non-NULL value of proflast in
Courses must be a valid professor last name in Profs.

RA JTprofLast(Courses) & JT last(Profs)

23

Foreignh Key Constraints in SQL

We want to require that every non-NULL value of proflast in
Courses must be a valid professor last name in Profs.

In Courses, declare proflast to be a foreign key.

CREATE TABLE Courses (
proflast VARCHAR(8) REFERENCES Profs(last),...);

CREATE TABLE Courses (
proflast VARCHAR(8), ...,
FOREIGN KEY proflast REFERENCES Profs(last));

24

Requirements for FOREIGN KEYs

= |f 3 relation R declares that some of its attributes refer

to foreign keys in another relation S, then these
attributes must be declared UNIQUE or PRIMARY KEY in

S.

= Values of the foreign key in R must appear in the
referenced attributes of some tuple in S.

25

Enforcing Referential Integrity

Three policies for maintaining referential integrity.
Default policy: reject violating modifications.

Cascade policy: mimic changes to the referenced
attributes at the foreign key.

Set-NULL policy: set appropriate attributes to NULL.

26

Default Policy for Enforcing
Referential Integrity

Reject violating modifications. There are four situations where
this can happen.

Insert a new Song tuple with an unreferenced Artist.

Update the artist attribute in a Song tuple to an unreferenced
Artist.

Update the name attribute in an Artist tuple who has at least one
Song tuple.

Delete a tuple in Artists who has at least one Song tuple.

27

Cascade Policy for Enforcing
Referential Integrity

= Only applies to deletions or updates to tuples in the
referenced relation (e.g., Artists).

" |f we delete a tuple in Artists, delete all tuples in Songs
that refer to that tuple.

" |f we change the name of an artists in Artists, update all
Songs with the altered artist name as well.

28

Set-NULL Policy for Enforcing
Referential Integrity

= Only applies to deletions or updates to tuples in the
referenced relation (e.g., Artists).

" |f we delete a tuple in Artists, set the artist attribute of
all tuples in Songs that refer to the deleted tuple to
NULL.

" |f we change the name of an artist in Artists, set all of
the artist attributes in any Song tuple that references
the artist to NULL.

29

Specifying Referential Integrity
Policies in SQL

SQL allows the database designer to specify the policy for deletes
and updates independently.

Optionally follow the declaration of the foreign key with ON
DELETE and/or ON UPDATE followed by the policy: SET NULL or
CASCADE.

Constraints can be circular, e.g., if there is a one-one mapping
between two relations.

SQL allows us to defer the checking of constraints (see Chapter
7.1.3).

Good suggestions if you don't want default rejection: ON DELETE
SET NULL, ON UPDATE CASCADE.

30

Specifying Referential Integrity
Policies in SQL

Remember — ON DELETE/ON UPDATE only applies in two
situations:

— Deleting a row from the REFERENCED table.
— Updating a row from the REFERENCED table.

Deletes and updates from the FOREIGN KEY table cannot be
propagated; they are still automatically rejected.

Example: updating a song in the songs table to change its artist.

31

Constraining Attributes and Tuples

SQL also allows us to specify constraints on attributes in a
relation and on tuples in a relation.

— Disallow courses with a maximum enrollment greater than 100.

— A chairperson of a department must teach at most one course
every semester.

How do we express such constraints in SQL?
How can we change our minds about constraints?

A simple constraint: NOT NULL

— Declare an attribute to be NOT NULL after its type in a CREATE
TABLE statement.

— Effect is to disallow tuples in which this attribute is NULL.

32

Attribute-Based CHECK Constraints

CREATE TABLE name (
attrib type CHECK (constraint), ..)

constraint is anything that can be in a WHERE clause.
— But usually it's a simple limit on values.

CHECK statement may use a subquery to mention other
attributes of the same relation or other relations.*

An attribute-based CHECK constraint is checked only

when any tuple gets a new value for this attribute.
— INSERTs/UPDATES

— Not DELETEs! (e.g., do not use CHECK to simulate referential integrity with
a foreign key)

33

Tuple-Based CHECK Constraints

Tuple-based CHECK constraints are checked whenever a tuple is
inserted into or updated in a relation.

Designer may add these constraints after the list of attributes in a
CREATE TABLE statement.

CREATE TABLE name (

attribl typel, attrib2 type2, ..
CHECK (constraint));

34

CHECK Caveats

= CHECK constraints are only triggered when the table on which
they are declared is INSERTed into or UPDATEd.

= |f 3 CHECK constraint on table T1 references another table T2 in a

constraint and that other table changes, it will not re-trigger the
CHECK.

= Many DBMSs (SQLite, MySQL, PostgreSQL, Oracle) prohibit
subqueries in CHECKSs for this reason.

35

Modifying Constraints

= SQL allows constraints to be named, so that they can
later be modified.

= See SQL documentation.

36

Scotty, we need more power!

I'm givin' her all she's got captain!

39

Assertions and Triggers

= Assertion — a schema-level condition that

must be true at all times (a more powerful
CHECK).

" Trigger — a series of actions associated with
some database event.

40

Assertions

= These are database-schema elements, like
relations
" Defined by:
— CREATE ASSERTION <name>
CHECK (<condition>);

" Condition may refer to any relation or
attribute in the database schema.

Assertions: Example

= Can’t have more courses than students
(‘Pigeonhole Principle’)

CREATE ASSERTION
(SELECT COUNT(*)
(SELECT COUNT(*)

);

~ewStudents CHECK (
-ROM Students) >=

-ROM Courses)

42

Assertions

= Bad news — no popular DBMSs support them.

43

Triggers: Motivation

" Assertions are powerful, but the DBMS often
can’t tell when they need to be checked.

" Attribute- and tuple-based checks are checked
at known times, but not as powerful.

" Triggers let the user decide when to check for
any condition.

44

Triggers
" Trigger: procedure that starts automatically if
specified changes occur to the DBMS
= Atrigger has three parts:
- Event (activates the trigger)

— Condition (tests whether the triggers should run)
— Action (what happens if the trigger runs)

Maintain a unary relation New_Courses which has the list of

brand new courses

45

Triggers

" Trigger: procedure that starts automatically if
specified changes occur to the DBMS

= Atrigger has three parts:
- Event (activates the trigger)
— Condition (tests whether the triggers should run)
— Action (what happens if the trigger runs)

CREATE TRIGGER incr_count

AFTER INSERT ON Teach // Event

REFERENCING NEW ROW AS new

FOR EACH ROW

WHEN (new.id NOT IN (SELECT ID FROM Courses)) // Condition
INSERT INTO New_Courses(id) VALUES(new.id); // Action

OK, what could have been done?

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

!

DID YOU REALLY
NAME YOR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES LUTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
t TOSANMIZE YOUR
DATABASE INPUTS.

47

