Discrete Structures, Fall 2014, Problem Set 8

You must write the solutions to these problems legibly on your own paper, with the problems in sequential order, and with all sheets stapled together.

1. Let $\mathbb{R}^{\neq 0}$ be the set of all nonzero real numbers. Define $f: \mathbb{R}^{\neq 0} \rightarrow \mathbb{R}$ by the rule $f(x)=$ $(x+1) / x$.
(a) Is f 1-1? Prove or give a counterexample.
(b) Is f onto? Prove or give a counterexample.
(c) Now define $\mathbb{R}^{\neq 1}$ to be the set of all real numbers except 1 . Define $g: \mathbb{R}^{\neq 0} \rightarrow \mathbb{R}^{\neq 1}$ by the rule $g(x)=(x+1) / x$. Is g onto? Prove or give a counterexample.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Define $(f+g): \mathbb{R} \rightarrow \mathbb{R}$ by the rule $(f+g)(x)=$ $f(x)+g(x)$.
(a) If f and g are both 1-1, is it true that $f+g$ is 1-1? Prove or give a counter-example.

For a counter-example, you can just define what you want f and g to be and state (without proof) that f and g individually are 1-1 but $f+g$ is not 1-1.
(b) If f and g are both onto, is it true that $f+g$ is onto? Prove or give a counter-example.

For a counter-example, you can just define what you want f and g to be and state (without proof) that f and g individually are onto but $f+g$ is not onto.
3. Let X, Y, and Z be sets. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. If $g \circ f$ is $1-1$, is is true that f is 1-1? Prove or give a counter-example.
Suggestion/hint/idea: Make up some arrow diagrams first to try to work out if this is true or if you should find a counter-example. Note that an arrow diagram suffices for a counterexample (since it defines a function), but in general, an arrow diagram will not suffice for universal proof of a function property.
4. Let $A=\{1,2,3,4\}$. Define a function $f: A \rightarrow A$ using an arrow diagram such that f is 1-1 and onto, f is not the identity function, but $f \circ f$ is the identity function.

