Theorem 6.2.1 - Subset Relations (Epp page 264)

Given any sets A, B, and C, the following rules hold:

Inclusion for intersection:	$A \cap B \subseteq A$	$A \cap B \subseteq B$
Inclusion for union:	$A \subseteq A \cup B$	$B \subseteq A \cup B$
Transitive property for subsets:	$[(A \subseteq B) \wedge(B \subseteq C)] \rightarrow(A \subseteq C)$	

Theorem 6.2.2 - Set Identities (Epp page 267)

Given any sets A, B, and C that are subsets of a universal set U, the following equalities hold:

Commutative laws:	$A \cap B=B \cap A$	$A \cup B=B \cup A$
Associative laws:	$(A \cap B) \cap C=A \cap(B \cap C)$	$(A \cup B) \cup C=A \cup(B \cup C)$
Distributive laws:	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Identity laws:	$A \cap U=A$	$A \cup \emptyset=A$
Complement laws:	$A \cup A^{c}=U$	$A \cap A^{c}=\emptyset$
Double complement law:	$\left(A^{c}\right)^{c}=A$	
Idempotent laws:	$A \cap A=A$	$A \cup A=A$
Universal bound laws:	$A \cup U=U$	$A \cap \emptyset=\emptyset$
De Morgan's laws:	$(A \cap B)^{c}=A^{c} \cup B^{c}$	$(A \cup B)^{c}=A^{c} \cap B^{c}$
Absorption laws:	$A \cup(A \cap B)=A$	$A \cap(A \cup B)=A$
Complements of U and $\emptyset:$	$U^{c}=\emptyset$	$\emptyset^{c}=U$
Set Difference Law:	$A-B=A \cap B^{c}$	

Theorem 6.2.3 - Subset Intersection and Union (Epp page 273)

Given any sets A and B, the following rules hold:

Intersection with subset:	$(A \subseteq B) \rightarrow(A \cap B=A)$
Union with subset:	$(A \subseteq B) \rightarrow(A \cup B=B)$

Miscellaneous

Given any set A, the following rules hold:

Every set is a subset of the universal set:	$A \subseteq U$
The empty set us a subset of every set:	$\emptyset \subseteq A$
Definition of the empty set:	$(A=\emptyset) \leftrightarrow(\forall x \in U x \notin A)$

