Set definitions – memorize these!

Definition of subset:	$A \subseteq B \iff \forall x \in U \ (x \in A) \to (x \in B)$
Definition of set equality:	$A = B \iff (A \subseteq B) \land (B \subseteq A)$
Definition of union:	$A \cup B = \{x \in U \mid x \in A \lor x \in B\}$
Definition of intersection:	$A \cap B = \{ x \in U \mid x \in A \land x \in B \}$
Definition of set difference:	$A - B = \{ x \in U \mid x \in A \land x \notin B \}$
Definition of complement:	$A^c = \{ x \in U \mid x \not\in A \}$
Definition of power set:	$\mathcal{P}(A) = \{ X \in U \mid X \subseteq A \}$
Definition of Cartesian product:	$A \times B = \{(x, y) \in U \mid x \in A \land y \in B\}$

Procedural definitions:

$x \in A \cup B \iff x \in A \lor x \in B$
$x \in A \cap B \iff x \in A \land x \in B$
$x \in A - B \iff x \in A \land x \notin B$
$x \in A^c \iff x \notin A \iff \sim (x \in A)$
$X \in \mathcal{P}\left(A\right) \iff X \subseteq A$
$(x,y) \in A \times B \iff x \in A \land y \in B$

" \Leftrightarrow " means "if and only if," or in other words, if the left side is true, then the right side is true, and vice-versa. You can use it the same way you use the " \equiv " sign. These signs are used in definitions to mean that you can replace the left side with the right side and vice versa.