Discrete Structures, Fall 2016, Homework 10 Practice & Solutions

You must write the solutions to these problems legibly on your own paper, with the problems in sequential order, and with all sheets stapled together.

- 1. Prove the following statement using an *element proof*: For any four sets A, B, C, and D, if $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq B \cap D$.
- 2. Prove the following statement using an *element proof*: For any three sets A, B, and C, if $A \subseteq (B - C)$, then $A \cap C = \emptyset$.
- 3. Prove the following statement using an *element proof*: For any three sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \times B \subseteq B \times C$.
- 4. Prove the following statement using an algebraic proof: For any two sets A and B, $((A^c \cup B^c) - A)^c = A$.

Solutions:

1. Prove the following statement using an *element proof*:

For any four sets A, B, C, and D, if $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq B \cap D$.

Proof:

Let A, B, C, and D be arbitrary sets.

Assume $A \subseteq B$ and $C \subseteq D$.

[Note: Our goal is to prove that $A \cap C \subseteq B \cap D$. Equivalently, we can rewrite this goal as $\forall x \in U \ (x \in A \cap C) \rightarrow (x \in B \cap D)$. We can prove this statement by letting x be an arbitrary element in U, assuming $x \in A \cap C$, and proving $x \in B \cap D$.]

Let x be an arbitrary element in U. Assume $x \in A \cap C$.

[Note: The line above could also be written as "Let x be an arbitrary element in $A \cap C$."]

 $x \in A \cap C$ (from above)

 $x \in A \land x \in C$ (def of intersection)

 $x \in A$ (conjunctive simplification)

 $x \in C$ (conjunctive simplification)

 $x \in B$ (because $x \in A$ and $A \subseteq B$)

 $x \in D$ (because $x \in C$ and $C \subseteq D$)

 $x \in B \land x \in D$ (conjunctive addition)

 $x \in B \cap D$ (def of union)

Because we have shown that if x is in $A \cap C$ then x is also in $B \cap D$, we can conclude (by the definition of subset) that $A \cap C \subseteq B \cap D$.

2. Prove the following statement using an *element proof*:

For any three sets A, B, and C, if $A \subseteq (B - C)$, then $A \cap C = \emptyset$.

Proof:

Let A, B, and C be arbitrary sets.

[Note: Our goal is to prove that $A \cap C = \emptyset$. To show a set is equal to the empty set, we will do a proof by contradiction: assume the set is non-empty, and derive a contradiction.]

Assume by way of contradiction that $A \cap C \neq \emptyset$.

Since $A \cap C$ is non-empty, there must exist an element in it: $\exists x \in U \ x \in A \cap C$.

 $x \in A \land x \in C$ (def of intersection)

 $x \in A$ (conjunctive simplification)

 $x \in C$ (conjunctive simplification)

 $x \in B - C$ (because $x \in A$, and $A \subseteq (B - C)$).

 $x \in B \land x \notin C$ (def of set difference)

 $x \notin C$ (conjunctive simplification)

We now have a contradiction: $x \in C$ and $x \notin C$. Therefore, our assumption (that $A \cap C \neq \emptyset$) must have been incorrect, and we can say that $A \cap C = \emptyset$.

3. Prove the following statement using an *element proof*:

For any three sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \times B \subseteq B \times C$.

Proof:

Let A, B, and C be arbitrary sets, and assume that $A \subseteq B$ and $B \subseteq C$.

[Note: We want to show $A \times B \subseteq B \times C$, so we'll do this with the standard method to prove a set is a subset of another set. We'll pick an arbitrary element in $A \times B$ and show that element must also be in $B \times C$.]

Let (x, y) be an arbitrary element in $A \times B$.

 $x \in A \land y \in B$ by definition of Cartesian product.

- $x \in A$ by conjunctive simplification.
- $y \in B$ by conjunctive simplification.

 $x \in B$ because $A \subseteq B$ and $x \in A$.

 $y \in C$ because $B \subseteq C$ and $y \in B$.

 $x \in B \land y \in C$ by conjunctive addition.

 $(x, y) \in B \times C$ by definition of Cartesian product.

Because we have shown that if we choose an arbitrary element of $A \times B$, then that element must also be in $B \times C$, then we can conclude that $A \times B \subseteq B \times C$.

4. Prove the following statement using an *algebraic proof*:

For any two sets A and B, $((A^c \cup B^c) - A)^c = A$.

[Note: We can do an algebraic proof here, because there are no initial assumptions about A or B (like one being a subset of the other or something similar). If there were any assumptions, we would need to do element proofs for subset in both directions to show equality.]

Proof:

$((A^c \cup B^c) - A)^c = ((A^c \cup B^c) \cap A^c)^c$	def of set difference
$= (A^c \cup B^c)^c \cup A$	DeMorgan's law
$= (A \cap B) \cup A$	DeMorgan's law
= A	absorption law^*

*Check the cheatsheet! Absorption is one of those rules that doesn't come up very often.