
Programming Languages

Victory Lap

Final Exam

•  Wednesday, December 16, 5:30PM
•  Material will be split somewhat evenly between pre-midterm and

post-midterm
–  Including topics on homeworks and not on homeworks

•  You will need to write code (Java, Racket) and English

Final Exam
Topics will be a subset of the following:
•  All the stuff from the midterm (Racket in general, closures,

recursion/tail-recursion, no mutation, lexical/dynamic scoping)
•  Delayed evaluation, thunks
•  Streams
•  Memoization
•  More in-depth static/dynamic typing
•  More advanced OO concepts (e.g., circle-ellipse problem, late

binding)
•  Threading
•  Interpreters and compilers
•  Event-driven programming

Keys to the game:
Know what a topic is,
what it's good for, what it's
bad for, how to use it,
how it relates to other
topics, and how to code it.

Victory Lap

A victory lap is an extra trip
around the track

–  By the exhausted
victors (us) J

Review course goals
–  See if we met them

Some big themes and perspectives

–  Stuff for five years from now more than for the final

Thank you!

•  You all made this a great class
–  Great attitude about a very different view of

software
–  Good class attendance and questions
–  Occasionally laughed at stuff J

Thank you!

•  My second time teaching this course; not my area of
expertise. (But I had a great time!)

•  Feedback is appreciated on projects, tests, and their
respective difficulty (too hard, too easy, just right?)

[From Lecture 1]
We have 14 weeks to learn the fundamental concepts of
programming languages

With hard work, patience, and an open mind, this course makes
you a much better programmer

–  Even in languages we won’t use
–  Learn the core ideas around which every language is built,

despite countless surface-level differences and variations
–  Poor course summary: “We learned Racket and Java”

Today’s class:
–  Course mechanics
–  [A rain-check on motivation]
–  Dive into Racket

[From Lecture 1]

•  Many essential concepts relevant in any programming language
–  And how these pieces fit together

•  Use Racket and Java (possibly others) because:
–  They let many of the concepts “shine”
–  Using multiple languages shows how the same concept can

“look different” or actually be slightly different

•  A big focus on functional programming
–  Not using mutation (assignment statements) (!)
–  Using first-class functions (can’t explain that yet)

[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a

lifetime of confidently picking up new languages and ideas

[From motivation lecture]

•  A good mechanic might have a specialty, but also understands
how “cars” (not 2014 Honda Civics) work
–  And that the syntax, I mean upholstery color, isn’t essential

•  A good mechanical engineer really knows how cars work, how
to get the most out of them, and how to design better ones

•  To learn how cars work, it may make sense to start with a
classic design rather than the latest model
–  A popular car may not be a good car for learning how cars

work

[From motivation lecture]

This course focuses as much as it can on semantics and idioms

•  Correct reasoning about programs, interfaces, and interpreters

or compilers requires a precise knowledge of semantics
–  Not “I feel that conditional expressions might work like this”
–  Not “I like curly braces more than parentheses”
–  Much of software development is designing precise

interfaces; what a PL means is a really good example

•  Idioms make you a better programmer
–  Best to see in multiple settings, including where they shine
–  See PL X in a clearer light even if I never show you X

[From motivation lecture]
•  No such thing as a “best” PL

•  There are good general design principles for PLs

•  A good language is a relevant, crisp interface for writing software

•  Software leaders should know PL semantics and idioms

•  Learning PLs is not about syntactic tricks for small programs

•  Functional languages have been on the leading edge for decades
–  Ideas get absorbed by the mainstream, but very slowly
–  Meanwhile, use the ideas to be a better programmer in C++

and Python.

Benefits of No Mutation

1.  Can freely alias or copy values/objects.

2.  No need to make local copies of data.

3.  No Circle-Ellipse problem.

Allowing mutation is appropriate when you are modeling a
phenomenon that is inherently state-based (meaning there are
variables that hold the "state" of the system and will need to
change.)

–  Performing an accumulation over a collection (e.g., summing
a list) isn't!

Some other highlights

•  Function closures are really powerful and convenient…
–  … and implementing them is not magic

•  Dynamic dispatch for OO really convenient…
–  … and implementing that isn't magic either

•  Static typing (and static checking) prevents certain errors…
–  … but makes some types of code more complicated

•  Multi-threading can make really neat programs…
–  … but introduces a lot of sticky situations (synch, wait/notifyAll)
–  … partially addressed by event-driven programming

From the syllabus
[Caveat: I wrote the goals, so not surprising I hope we met them.]

Successful course participants will:
•  obtain an accurate understanding of what functional and object-

oriented programs mean,
•  develop the skills necessary to learn new programming

languages quickly,
•  master specific language concepts such that they can recognize

them in strange guises,
•  learn to evaluate the power and elegance of programming

languages and their constructs,
•  attain reasonable proficiency in a number of popular

programming languages, and,
•  become more proficient in languages they already know

From the "so-called experts" J

•  Once a decade or so, ACM/IEEE updates a "standard CS
curriculum"
–  A specification of what every CS undergraduate degree

should teach its students

•  Last updated in 2013!
–  Let's take a look at a draft and see how well we did.
–  (Note that not everything in the PL section of the draft will be

taught in a single course.)

What next?
•  Take these ideas and use them in practice!

–  (But only where it makes sense)
•  Be confident when reading documentation, unfamiliar code, learning a

{new PL, new PL library, new programming paradigm}.
•  Learn more Java!

•  Stay in touch
–  Tell me when this class helps you out with something cool (seriously)
–  Ask me cool PL questions (may not always know the answer, but I

can tell you where to find it)
–  Don't be a stranger: let me know how the rest of your time at Rhodes

(and beyond!) goes… I really do like to know

YOUR
INTERPRETER!

