Programming Languages

Victory Lap

Function

CAR
CDR

CAAR
CADR
CDAR
CDDR

CAAAR
CAADR
CADAR
CADDR
CDAAR
CDADR
CDDAR
CDDDR

CADDDR

and so on

Pronunciation

kar
cou-der

ka-ar
kae-der
cou-dar
cou-dih-der

ka-a-ar
ka-ae-der
ka-dar
ka-dih-der
cou-da-ar
cou-dae-der
cou-dih-dar
cou-did-dih-der

ka-dih-dih-der

CAR/CDR Pronunciation Guide

Alternate Name

FIRST
REST

SECOND

THIRD

FOURTH

Final Exam

 Wednesday, December 16, 5:30PM

« Material will be split somewhat evenly between pre-midterm and
post-midterm

— Including topics on homeworks and not on homeworks
* You will need to write code (Java, Racket) and English

Final Exam

Topics will be a subset of the following:

All the stuff from the midterm (Racket in general, closures,
recursion/tail-recursion, no mutation, lexical/dynamic scoping)

Delayed evaluation, thunks
Streams

Memoization

More in-depth static/dynamic typing

More advanced OO concepts (e.g., circle-ellipse problem, late
binding)
Threading Keys to the game:

Interpreters and compilers KnOW_ what a topic is, _
Event-driven programming what it's good for, what it's

bad for, how to use it,
how It relates to other
topics, and how to code it.

Victory Lap

A victory lap is an extra trip
around the track

— By the exhausted
victors (us) ©

Review course goals
— See if we met them

Some big themes and perspectives
— Stuff for five years from now more than for the final

Thank you!

* You all made this a great class

— Great attitude about a very different view of
software

— Good class attendance and questions
— Occasionally laughed at stuff ©

Thank you!

« My second time teaching this course; not my area of
expertise. (But | had a great time!)

 Feedback is appreciated on projects, tests, and their
respective difficulty (too hard, too easy, just right?)

[From Lecture 1]

We have 14 weeks to learn the fundamental concepts of
programming languages

With hard work, patience, and an open mind, this course makes
you a much better programmer

— Even in languages we won't use

— Learn the core ideas around which every language is built,
despite countless surface-level differences and variations

— Poor course summary: “We learned Racket and Java”

Today’s class:
— Course mechanics
— [A rain-check on motivation]
— Dive into Racket

[From Lecture 1]

 Many essential concepts relevant in any programming language
— And how these pieces fit together

« Use Racket and Java (possibly others) because:
— They let many of the concepts “shine”

— Using multiple languages shows how the same concept can
“look different” or actually be slightly different

* A big focus on functional programming
— Not using mutation (assignment statements) (!)
— Using first-class functions (can’t explain that yet)

[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[From motivation lecture]

A good mechanic might have a specialty, but also understands
how “cars” (not 2014 Honda Civics) work

— And that the syntax, | mean upholstery color, isn’t essential

A good mechanical engineer really knows how cars work, how
to get the most out of them, and how to design better ones

To learn how cars work, it may make sense to start with a
classic design rather than the latest model

— A popular car may not be a good car for learning how cars
work

[From motivation lecture]

This course focuses as much as it can on semantics and idioms

« Correct reasoning about programs, interfaces, and interpreters
or compilers requires a precise knowledge of semantics

— Not “| feel that conditional expressions might work like this”
— Not “| like curly braces more than parentheses”

— Much of software development is designing precise
interfaces; what a PL means is a really good example

* |dioms make you a better programmer
— Best to see in multiple settings, including where they shine
— See PL Xin a clearer light even if | never show you X

[From motivation lecture]
« No such thing as a “best” PL

« There are good general design principles for PLs

* A good language is a relevant, crisp interface for writing software
« Software leaders should know PL semantics and idioms

« Learning PLs is not about syntactic tricks for small programs

« Functional languages have been on the leading edge for decades
— ldeas get absorbed by the mainstream, but very slowly

— Meanwhile, use the ideas to be a better programmer in C++
and Python.

Benefits of No Mutation

1. Can freely alias or copy values/objects.
2. No need to make local copies of data.
3. No Circle-Ellipse problem.

Allowing mutation is appropriate when you are modeling a
phenomenon that is inherently state-based (meaning there are
variables that hold the "state" of the system and will need to
change.)

— Performing an accumulation over a collection (e.g., summing
a list) isn't!

Some other highlights

« Function closures are really powerful and convenient...
— ... and implementing them is not magic
« Dynamic dispatch for OO really convenient...
— ... and implementing that isn't magic either
« Static typing (and static checking) prevents certain errors...
— ... but makes some types of code more complicated
« Multi-threading can make really neat programs...
— ... but introduces a lot of sticky situations (synch, wait/notifyAll)
— ... partially addressed by event-driven programming

From the syllabus

[Caveat: | wrote the goals, so not surprising | hope we met them.]

Successful course participants will:

obtain an accurate understanding of what functional and object-
oriented programs mean,

develop the skills necessary to learn new programming
languages quickly,

master specific language concepts such that they can recognize
them in strange guises,

learn to evaluate the power and elegance of programming
languages and their constructs,

attain reasonable proficiency in a number of popular
programming languages, and,

become more proficient in languages they already know

From the "so-called experts" ©

 Once a decade or so, ACM/IEEE updates a "standard CS
curriculum”

— A specification of what every CS undergraduate degree
should teach its students

e Last updated in 2013!
— Let's take a look at a draft and see how well we did.

— (Note that not everything in the PL section of the draft will be
taught in a single course.)

PL. Programming Languages (8 Core-Tier1 hours, 20 Core-Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes Electives

PL/Object-Oriented Programming 4 6 N
PL/Functional Programming 3 4 N
PL/Event-Driven and Reactive 2 N
Programming

PL/Basic Type Systems 1 4 N
PL/Program Representation 1 N
PL/Language Translation and 3 N
Execution

PL/Syntax Analysis Y
PL/Compiler Semantic Analysis Y
PL/Code Generation Y
PL/Runtime Systems Y
PL/Static Analysis Y
PL/Advanced Programming Y

Constructs

PL/Concurrency and Parallelism

PL/Type Systems

PL/Formal Semantics

PL/Language Pragmatics

<|=<|=<|=<|=<

PL/Logic Programming

What next?

Take these ideas and use them in practice!
— (But only where it makes sense)

Be confident when reading documentation, unfamiliar code, learning a
{new PL, new PL library, new programming paradigm}.

Learn more Java!

Stay in touch
— Tell me when this class helps you out with something cool (seriously)

— Ask me cool PL questions (may not always know the answer, but |
can tell you where to find it)

— Don't be a stranger: let me know how the rest of your time at Rhodes
(and beyond!) goes... | really do like to know

00 | HINS

vbuk I
" INTERPRETER!

