
Programming Languages

Function-Closure Idioms

More idioms

•  We know the rule for lexical scope and function closures
–  Now what is it good for

A partial but wide-ranging list:

•  Pass functions with private data to iterators: Done

•  Combine functions (e.g., composition)

•  Currying (multi-arg functions and partial application)

•  Callbacks (e.g., in reactive programming)

•  Implementing an ADT with a record of functions

Combine functions

Canonical example is function composition:

•  Creates a closure that “remembers” what g and h are bound to
•  This function is built-in to Racket; but this definition is basically

how it works.
•  3rd version is the best (clearest as to what it does):

(define (compose f g) (lambda (x) (f (g x)))

(define (sqrt-of-abs i) (sqrt (abs i))
(define (sqrt-of-abs i) ((compose sqrt abs) i)
(define sqrt-of-abs (compose sqrt abs)

Currying and Partial Application
•  Currying is the idea of calling a function with an incomplete set

of arguments.
•  When you "curry" a function, you get a function back that

accepts the remaining arguments.
•  Named after Haskell Curry, who studied related ideas in logic.

Currying and Partial Application

•  We know (expt x y) raises x to the y'th power.
•  We could define a curried version of expt like this:
•  (define (expt-curried x)  

 (lambda (y) (expt x y))
•  We can call this function like this:

 ((expt-curried 4) 2)
•  This is useful because expt-curried is now a function of a

single argument that can make a family of "raise-this-to-some-
power" functions.

•  This is critical in some other functional languages (albeit, not
Racket or Scheme) where functions may have at most one
argument.

Currying and Partial Application

•  Currying is still useful in Racket with the curry function:
–  Takes a function f and (optionally) some arguments a1, a2, ….
–  Returns an anonymous function g that accumulates arguments to
f until there are enough to call f.

•  (curry expt 4) returns a function that raises 4 to its argument.
–  (curry expt 4) == expt-curried
–  ((curry expt 4) 2) == ((expt-curried 4) 2)

•  (curry * 2) returns a function that doubles its argument.
•  These can be useful in definitions themselves:

–  (define (double x) (* 2 x))
–  (define double (curry * 2))

Currying and Partial Application
•  Currying is also useful to shorten longish lambda expressions:
•  Old way: (map (lambda (x) (+ x 1)) '(1 2 3))
•  New way: (map (curry + 1) '(1 2 3))  

•  Great for encapsulating private data: list-ref is the built-in get-nth.

(define get-month  
 (curry list-ref '(Jan Feb Mar Apr May Jun  
 Jul Aug Sep Oct Nov Dec)))  

•  This example introduces a new datatype: symbol.
–  Symbols are similar to strings, except they don't have quotes

around them (and you can't take them apart or add them
together like strings).

Currying and Partial Application
•  But this gives zero-based months:
•  (define get-month  

 (curry list-ref
 '(Jan Feb Mar Apr May Jun  
 Jul Aug Sep Oct Nov Dec)))  

•  Let's subtract one from the argument first:
(define get-month  
 (compose  
 (curry list-ref

 '(Jan Feb Mar Apr May Jun  
 Jul Aug Sep Oct Nov Dec))  
 (curryr - 1)))

curryr curries
from right to
left, rather than
left to right.

Currying and Partial Application
•  Another example:
(define (eval-polynomial coeff x)
 (if (null? coeff) 0
 (+ (* (car coeff) (expt x (- (length coeff) 1)))  
 (eval-polynomial (cdr coeff) x))))

(define (make-polynomial coeff)
 (lambda (x) (eval-polynomial coeff x))  
 

(define make-polynomial (curry eval-polynomial))

Currying and Partial Application
•  A few more examples:

•  (map (compose (curry + 2) (curry * 4)) '(1 2 3))
–  quadruples then adds two to the list '(1 2 3)

•  (filter (curry < 10) '(6 8 10 12))
–  Careful! curry works from the left, so (curry < 10) is

equivalent to (lambda (x) (< 10 x)) so this filter keeps
numbers that are greater than 10.

•  Probably clearer to do:
 (filter (curryr > 10) '(6 8 10 12))

•  (In this case, the confusion is because we are used to "<" being an
infix operator).

Return to the foldr J
Currying becomes really powerful when you curry higher-order
functions.

Recall (foldr f init (x1 x2 … xn)) returns
 (f x1 (f x2 … (f xn-2 (f xn-1 (f xn init))

(define (sum-list-ok lst) (foldr + 0 lst))

(define sum-list-super-cool (curry foldr + 0)

Another example

•  Scheme and Racket have andmap and ormap.
•  (andmap f (x1 x2…)) returns (and (f x1) (f x2) …)
•  (ormap f (x1 x2…)) returns (or (f x1) (f x2) …)

(andmap (curryr > 7) '(8 9 10)) è #t
(ormap (curryr > 7) '(4 5 6 7 8)) è #t
(ormap (curryr > 7) '(4 5 6)) è #f

(define contains7 (curry ormap (curry = 7)))
(define all-are7 (curry andmap (curry = 7)))

Another example
Currying and partial application can be convenient even without higher-
order functions.
 Note: (range a b) returns a list of integers from a to b-1, inclusive.

(define (zip lst1 lst2)
 (if (null? lst1) '()
 (cons (list (car lst1) (car lst2))
 (zip (cdr lst1) (cdr lst2)))))

(define countup (curry range 1))

(define (add-numbers lst)
 (zip (countup (length lst)) lst))

When to use currying
•  When you write a lambda function of the form

–  (lambda (y1 y2 …) (f x1 x2 … y1 y2…))
•  You can replace that with

–  (curry f x1 x2 …)  

•  Similarly, replace
–  (lambda (y1 y2 …) (f y1 y2 … x1 x2…))

•  with
–  (curryr f x1 x2 …)

When to use currying
•  Try these:

–  Assuming lst is a list of numbers, write a call to filter
that keeps all numbers greater than 4.

–  Assuming lst is a list of lists of numbers, write a call to
map that adds a 1 to the front of each sublist.

–  Assuming lst is a list of numbers, write a call to map that
turns each number (in lst) into the list (1 number).

–  Assuming lst is a list of numbers, write a call to map that
squares each number (you should curry expt).

–  Define a function dist-from-origin in terms of currying a
function (dist x1 y1 x2 y2) [assume dist is already
defined elsewhere]

Callbacks

A common idiom: Library takes functions to apply later, when an
event occurs – examples:

–  When a key is pressed, mouse moves, data arrives
–  When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
–  Different callbacks may need different private data with

different types
–  (Can accomplish this in C++ with objects that contain private

fields.)

Mutable state

While it’s not absolutely necessary, mutable state is reasonably
appropriate here

–  We really do want the “callbacks registered” and “events that
have been delivered” to change due to function calls

In "pure" functional programming, there is no mutation.
–  Therefore, it is guaranteed that calling a function with

certain arguments will always return the same value, no
matter how many times it's called.

–  Not guaranteed once mutation is introduced.
–  This is why global variables are considered "bad" in

languages like C or C++ (global constants OK).

Mutable state: Example in C++

times_called = 0

int function() {  
 times_called++;  
 return times_called;
}

This is useful, but can cause big problems if somebody else
modifies times_called from elsewhere in the program.

Mutable state
•  Scheme and Racket's variables are mutable.
•  The name of any function which does mutation contains a "!"
•  Mutate a variable with set!

–  Only works after the variable has been placed into an
environment with define, let, or as an argument to a function.

–  set! does not return a value.
 (define times-called 0)
 (define (function)  
 (set! times-called (+ 1 times-called))  
 times-called)
•  Notice that functions that have side-effects or use mutation are the

only functions that need to have bodies with more than one
expression in them.

Example call-back library

Library maintains mutable state for “what callbacks are there” and
provides a function for accepting new ones

–  A real library would support removing them, etc.
(define callbacks '())
(define (add-callback func)
 (set! callbacks (cons func callbacks)))

(define (key-press which-key)
 (for-each
 (lambda (func) (func which-key)) callbacks))

Examples of using callback functions
(define (print-if-pressed key message)
 (add-callback
 (lambda (which-key)
 (if (string=? key which-key)
 (begin (display message) (newline)) #f))))

(define count-presses 0)
(add-callback
 (lambda (key)
 (set! count-presses (+ 1 count-presses))
 (display "total presses = ")
 (display count-presses)
 (newline)))

Improvement on the client side
•  Why clutter up the global environment with count-presses?
•  We don't want some other function mucking with that variable.
•  Let's hide it inside a let that only our callback can access.

(let ((count-presses 0))
 (add-callback
 (lambda (key)
 (set! count-presses (+ 1 count-presses))
 (display "total presses = ")
 (display count-presses)
 (newline)))

How does that work?

•  What does the environment diagram for these look like?

(define (f x)  
 (let ((y 1))  
 (lambda (y) (+ x y z))))  
 
(define g  
 (let ((x 1))  
 (lambda (y) (+ x y))))

Implementing an ADT

As our last pattern, closures can implement abstract data types
–  They can share the same private data
–  Private data can be mutable or immutable
–  Feels quite a bit like objects, emphasizing that OOP and

functional programming have similarities

The actual code is advanced/clever/tricky, but has no new features
–  Combines lexical scope, closures, and higher-level functions
–  Client use is not so tricky

(define (new-stack)
 (let ((the-stack '()))
 (define (dispatch method-name)
 (cond ((eq? method-name 'empty?) empty?)
 ((eq? method-name 'push) push)
 ((eq? method-name 'pop) pop)
 (#t (error "Bad method name"))))
 (define (empty?) (null? the-stack))
 (define (push item) (set! the-stack (cons item the-stack)))
 (define (pop)
 (if (null? the-stack) (error "Can't pop an empty stack")
 (let ((top-item (car the-stack)))
 (set! the-stack (cdr the-stack))
 top-item)))
 dispatch)) ; this last line is the return value  
 ; of the let statement at the top.

