
Programming Languages

Streams

MIDTERM – Wednesday?

Review

•  A thunk is a function of no arguments used to explicitly delay a
result.

•  (delay expression) => returns a thunked version of
expression
–  has to be implemented as a special form so that
expression won't be evaluated until we force it.

–  Once forced, later forces won't re-evaluate expression,
but rather the same value will be returned for every
subsequent force.

–  Called a promise. (in that we say delay returns a promise)
•  (force promise) => returns the value of the original

delayed expression, either by evaluating it, or saving the cached
value.

Example

(define x 1)
(define y (delay x)
(force y)
(set! x 2)
(force y)

Streams
•  One common use for promises is to create a new data type

called a stream.
•  Stream == List

–  Only difference is the car of a stream is eager (evaluated
normally), but the cdr is lazy (implemented as a promise).

–  (Car and cdr of normal lists are eager.)
•  Create a stream with stream-cons:

(define-syntax-rule (stream-cons first rest)
 (cons first (delay rest)))

•  This code creates a special form that literally replaces every call
to stream-cons with the line (cons <first arg> (delay <2nd arg>)).

•  A normal function wouldn't work because it would evaluate both
arguments, but we want to delay evaluation of the rest
argument.

Useful stream functions

List version Stream version

'() the-empty-stream

null? stream-null?

car stream-car

cdr stream-cdr

stream->list

list-ref stream-ref

stream-enumerate

Most of these are just the list functions we know and
love with the prefix "stream-"

Finite Streams

•  Not any more useful than lists.
–  (stream-cons 1  
 (stream-cons 2  
 (stream-cons 3 the-empty-stream)))

•  The power of streams comes from making infinite streams
–  Impossible to do with lists.
–  Easy with streams because we don't explicitly represent all

the values (since there are an infinite number of them).
–  Instead, we represent the first one explicitly, and then

promise to provide the next one as soon as it's needed.

Two common stream idioms

•  Consider these two variations:

•  (define (make-constant-stream item)
 (stream-cons item  
 (make-constant-stream item)))

 (define ones-alt (make-constant-stream 1))  

•  (define ones (stream-cons 1 ones))

•  Create an infinite stream of integers, starting at zero and
increasing by one.
–  Hint: define a function that takes an argument x and returns

a stream of integers starting from x.
•  Define a function stream-map that duplicates the functionality

of map for streams.
•  Define a function stream-map2 that works like map2 on proj2

(takes a function of two args and two streams).
•  Define an alternate version of the infinite stream of integers

starting from zero by using stream-map and an infinite stream
of ones.

•  Define a function stream-filter that duplicates filter.
•  Define a function not-divisible-by that takes a stream of

integers and an integer n and removes all the integers that are
divisible by n from the stream.

•  Define an infinite stream of prime numbers.
–  Hint: use not-divisible-by on a stream of the ints from 2.

•  Define an infinite stream of the Fibonacci numbers.

