
Programming Languages 
 

Streams Wrapup, Memoization, 
Type Systems, and Some Monty Python 



Quick Review of Constructing Streams 

•  Usually two ways to construct a stream. 
•  Method 1: Use a function that takes a(n) argument(s) from 

which the next element of the stream can be constructed. 

(define (integers-from n)
  (stream-cons n (integers-from (+ n 1))))
(define ints-from-2 (integers-from 2))

•  When you use this technique, your code usually looks a lot like 
you have infinite recursion. 

•  Often the code is very clear (easy to see how it works). 



Quick Review of Constructing Streams 

•  Usually two ways to construct a stream. 
•  Method 2: Construct the stream directly by defining it in terms of 

a modified version of another stream or itself. 

(define ints-from-2-alt 
  (stream-cons 2  
    (stream-map (lambda (x) (+ x 1))  
                ints-from-2-alt)))

•  This technique is fine, but can be harder to figure out how it 
works. 



Quick Review of Constructing Streams 

•  Usually two ways to construct a stream. 
•  Method 2: Construct the stream directly by defining it in terms of 

a modified version of another stream or itself. 

(define ints-from-2-alt-alt
  (stream-cons 2  
    (stream-map2 +  
                 infinite-ones  
                 ints-from-2-alt-alt)))



Fibonacci 
•  Method 1: 

(define (make-fib-stream a b)
  (stream-cons a (make-fib-stream b (+ a b))))

(define fibs1 (make-fib-stream 0 1))



Fibonacci 
•  Method 2: 

(define fibs  
  (stream-cons 0  
    (stream-cons 1  
      (stream-map2 + (stream-cdr fibs) fibs))))



Sieve of Eratosthenes 

•  Start with an infinite stream of integers, starting from 2. 
•  Remove all the integers divisible by 2. 
•  Remove all the integers divisible by 3. 
•  Remove all the integers divisible by 5…etc 



Sieve of Eratosthenes 

(define (not-divisible-by s div)
  (stream-filter  
     (lambda (x) (> (remainder x div) 0)) s))

(define (sieve s)
  (stream-cons
   (stream-car s)
   (sieve (not-divisible-by s (stream-car s)))))

(define primes (sieve ints-from-2))



Stream wrapup 

•  Streams are an implementation of the Iterator abstraction. 
•  An Iterator is something that lets the programmer traverse data 

in a ordered, linear fashion. 
•  You've seen C++ iterators that let you iterate over vectors. 

–  There are also C++ iterators that let you iterate over sets, 
the entries in maps, and lots of other data structures. 



Stream wrapup 
•  Racket's streams obey the same semantics as C++ iterators. 

 
•  You can easily create infinite iterators in C++, just like you can 

create infinite streams in Racket. 
•  The concept of an iterator doesn't distinguish between iterating 

over a pre-existing data structure and iterating over 
something that's being generated on the fly. 
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Stream wrapup 
•  What to take away from all this: 
•  Most modern languages have one or more data types that 

encapsulate this iteration concept. 
–  Iterators: C++, Java 
–  Streams: Racket, Scheme, and most functional languages 
–  Sequences: Python 
–  Functions: Almost any language 

•  Can "fake" an iterator with a functions: 

int nextInt()
{
  static int i = 0;
  i++;
  return i;
}

int nextInt(int old)
{
  return old + 1;
}



Stream wrapup 
•  Python's built-in iterators are called sequences. 

 
for x in range(0, 100**100): 
  print(x)  

–  This code would never run if Python actually computed a list 
containing 100100 integers before starting to print them. 

–  Instead, range returns an iterator over the numbers that 
doesn't generate the next integer until it's needed. 
 

•  Python actually has the advantage here over Racket, because 
Racket could never generate a stream of 100100 integers. 

•  Why not? 



And Now For Something Completely 
Different (But Kind of Related) 



Fibonacci 
(define (make-fib-stream a b)
  (stream-cons a (make-fib-stream b (+ a b))))
(define fibs1 (make-fib-stream 0 1))  

•  More efficient (but less clear?) than 

(define (fib n)  
  (cond ((= n 0) 0)  
        ((= n 1) 1)  
        (#t (+ (fib (- n 1)) (fib (- n 2))))))  

•  How to get the best of both worlds? 



Memoization 

•  If a function has no side effects and doesn’t read mutable 
memory, no point in computing it twice for the same arguments 
–  Can keep a cache of previous results 
–  Net win if (1) maintaining cache is cheaper than recomputing 

and (2) cached results are reused 

•  Similar to how we implemented promises, but the function takes 
arguments so there are multiple “previous results” 

•  For recursive functions, this memoization can lead to 
exponentially faster programs 
–  Related to algorithmic technique of dynamic programming 



(define fast-fib
 (let ((cache '()))
  (define (lookup-in-cache cache n)
   (cond ((null? cache) #f)
         ((= (caar cache) n) (cadar cache))
         (#t (lookup-in-cache (cdr cache) n))))
    
 (lambda (n)
  (if (or (= n 0) (= n 1)) n
      (let ((check-cache (lookup-in-cache cache n)))
       (cond ((not check-cache) 
               (let ((answer (+ (fast-fib (- n 1))
                                (fast-fib (- n 2)))))
                (set! cache (cons (list n answer) cache))
                     answer))
             (#t check-cache)))))))



Memoization in other languages 

•  Code for memoization is often easier with an explicit hashtable 
data structure: 

int fib(int n) {
  static map<int, int> cache;
  if (n < 2) return n;
  if (cache.count(n) == 0) {
    int ans = fib(n-1) + fib(n-2);
    cache[n] = ans;
    return ans;
  } else return cache[n];
}

 



Memoization wrapup 

•  Memoization is related to streams in that streams also 
remember their previously-computed values. 
–  Remember how promises save their results and return them 

instead of re-computing? 
•  But memoization is more flexible because it works with any 

function. 

•  Memoization is a classic example of the time-space trade-off in 
CS: 
–  With memoization, we use more space, but use less time. 



And Now For Something Completely 
Different (It's Really Different This Time!) 



Static vs. dynamic typing 

•  A big, juicy, essential, topic about how to think about PLs 
–  Conversation usually overrun with half-informed opinions L 
–  Will consider reasonable arguments “for” and “against” last 

•  First, a review! 



Static vs Dynamic Typing 

•  A PL uses static typing when most type-checking is done at 
compile-time.  (e.g., C, C++, Java) 
–  (or for an interpreter, before the program begins running) 

•  A PL uses dynamic typing when most type-checking is done at 
run-time.  (e.g., Python, Racket) 

•  Languages that are usually compiled often use static typing.  
•  Languages that are usually interpreted often use dynamic 

typing. 
 



Static vs Dynamic Typing 

•  Static/dynamic typing has NOTHING to do with static/dynamic 
scoping! 
–  The names are similar because "static" often refers to 

compile-time (or before the program starts running) and 
dynamic often refers to run-time (while the program is 
running). 



Static checking 

•  Static checking is anything done to reject a program after it 
(successfully) parses but before it runs 

•  What static checking is performed is part of the PL definition 
–  A “helpful tool” (like an IDE) can do more if it wants 

•  Most common way to define a PL’s static checking is via a type 
system 
–  Approach is to give each variable, expression, etc. a type 
–  Purposes include preventing misuse of primitives (e.g., 4/"hi") 

and avoiding dynamic checking (dynamic means at run-time) 

•  Dynamically typed PLs (e.g., Python, Racket) do much less static 
checking than statically typed PLs (e.g., C++, Java) 



Example: C++, what types prevent 

In C++, type-checking ensures a program (when run) will never: 

•  Use a primitive operation on a value of the wrong type 
–  Use arithmetic on a non-number 
–  Let you call f(x) if f takes an int argument and x is a string. 
–  Let you say if (whatever) if "whatever" cannot be casted to a 

boolean. 
•  Use a variable that is not in the environment 

These two features are “standard” for type systems 



Example: C++, what types don’t prevent 

In C++, type-checking does not prevent any of these errors 
–  Instead, detected at run-time 

 
•  Calling functions such that exceptions occur, e.g., dereferencing 

a null pointer. 
•  An array-bounds error 
•  Division-by-zero 

And in general no type system prevents logic / algorithmic errors: 
•  Reversing the branches of a conditional 
•  Calling f instead of g 



The purpose is to prevent something 

Have discussed facts about what the C++ type system does and 
does not prevent 

–  Without discussing how (e.g., one type for each variable) 
though you know how types in C++ work 

Part of language design is deciding what is checked and how 
–  Hard part is making sure the type system does it correctly 

•  Take away: 
–  Static checking = checks done before the program is run 

(often relating to data types). 
–  Dynamic checking = checks done while running. 



A question of eagerness 

“Catching a bug before it matters”  
is in inherent tension with  

“Don’t report a bug that might not matter” 

Static checking / dynamic checking are two points on a continuum 

Silly example: Suppose we just want to prevent evaluating 3 / 0 
–  Keystroke time: disallow it in the editor 
–  Compile time: disallow it if seen in code 
–  Link time: disallow it if seen in code that may be called to 

evaluate main 
–  Run time: disallow it right when we get to the division 
–  Later: Instead of doing the division, return +inf instead  



Now consider costs and benefits 

Having carefully stated facts about static typing,  
we can now consider arguments about whether it is better or worse 
than dynamic typing. 



An Argument With Myself 



Claim 1a: Dynamic is more convenient 
Dynamic typing lets you build a heterogeneous list or return a 
“number or a string” without getting in your way 

(define (f y)  
  (if (> y 0) (+ y y) "hi")) 
 

(let ((ans (f x)))  
  (if (number? ans) (number->string ans) ans)) 
 

C++: can't do this easily; what would the 
return type of f be? 

 
 
 



Claim 1b: Static is more convenient 

Can assume data has the expected type without cluttering code 
with dynamic checks or having errors far from the logical mistake 

(define (cube x)  
  (if (not (number? x))  
      (error "bad arguments") 
      (* x x x))) 
 

(cube 7) 

int cube(int x) { 
  return x * x * x; 
} 



Claim 2a: Static prevents useful programs 

Any sound static type system forbids programs that do nothing 
wrong, forcing the programmer to code around the limitation 

C++: nope nope nope 

def f(lst): 
  lst.append(1) 
  lst.append(True) 



Claim 2b: Dynamic allows non-meaningful 
programs 

def f(lst): 
  lst.append(1) 
  lst.append(True) 

•  Does this really make sense? 
•  Did we make a mistake? 
•  Should we have separate lists with ints 

and booleans?   
•  Should we have a data type with an int 

and a boolean? 



Claim 3a: Static catches bugs earlier 

Static typing catches tons of simple bugs as soon as you compile 
–  Since you know they are prevented, no need to test for them 

; gimme all the positive numbers 
(filter + '(-8 5 0 3)) 
 
 

 
 
 

//In a C++-ish language with static typing: 
vector<int> v = ...   
// Make a function that takes 2 ints and returns an int 
function<int, int, int> add = ... 
filter(add, v)  // compiler would flag as error 
                // because filter must take a function 
                // of one argument. 
 



Claim 3b: Static catches only easy bugs 

But it usually catches only the "easier" bugs, so you still have to 
test your functions, which should find the "easier" bugs too 
 
Example: 
f(int* x)
{
  cout << *x << endl;  
    // (oops, forgot to check if NULL)
}



Claim 4a: Static typing is faster 

 
Your code does not need to check arguments and results to make 
sure they're the right type. 
 
 
(Faster for code execution, because the compiler does not have to 
insert any type checking code.) 



Claim 4b: Dynamic typing is faster  

 
Your code does not need to check arguments and results to make 
sure they're the right type. 
 
 
(Faster for program development, because *you* don't have to 
insert type-checking code (i.e., listing data types of function 
arguments).) 



Claim 5a: Code reuse easier with dynamic 

By not requiring types, more code can just be reused with data of 
different types 
•  If you use cons cells for everything, libraries that work on cons 

cells are available 
•  Collections libraries are amazingly useful but often have very 

complicated static types (have you seen C++ error messages 
with collections [e.g., vector, map, set, etc])?? 

error: no match for ‘operator!’ in ‘!cache. std::map<_Key, _Tp, 
_Compare, _Alloc>::find [with _Key = int, _Tp = int, _Compare = 
std::less<int>, _Alloc = std::allocator<std::pair<const int, int> >]
(((const int&)((const int*)(& n))))’ 
 



Claim 5b: Code reuse easier with static 

•  Modern type systems should support reasonable code reuse 
with features like generics and subtyping 

•  If you use cons cells for everything, you will confuse what 
represents what and get hard-to-debug errors 
–  Use separate static types to keep ideas separate 
–  Static types help avoid library misuse 



So far 

Considered 5 things you care about when writing code: 
1.  Convenience 
2.  Not preventing useful programs 
3.  Catching bugs asap 
4.  Performance 
5.  Code reuse 
 
But we took the naïve view that software is developed by taking an 
existing spec, coding it up, testing it, and declaring victory.  Reality: 

–  Often do a lot of prototyping before you have a stable spec 
–  Often do a lot of maintenance/evolution after version 1.0 



Claim 6a: Dynamic better for prototyping 

Early on, you don't know what cases you need in your data types 
and your code 

–  But static typing won't let you try code without having all 
cases; dynamic lets incomplete programs run 

–  So you make premature commitments to data structures 
–  And end up writing a lot of code to appease the type-checker 

that you are going to end up throwing away 
 



Claim 6b: Static better for prototyping 

What better way to document your evolving decisions on data 
structures and code-cases than with the type system? 

Easy to put in temporary stubs as necessary, such as 
    void awesome_function(int x) { 
       // do something awesome 
    } 
 
    void awesome_function(string s) { 
       cout << "Not written yet! << endl; 
    } 



Claim 7a: Dynamic better for evolution 

Can change code to be more permissive without affecting old callers 
–  Example: Take an int or a string instead of an int 
 
  OLD                          NEW 

(define (f x)(* 2 x)) 
 

(define (f x) 
  (if (number? x) 
      (* 2 x) 
      (string-append x x))) 

f(int x) { 
  return 2 * x; 
} 
 

In C++, we're saved by 
overloading. 

In C, we panic. 
 
 



Claim 7b: Static better for evolution 

When we change type of data or code, the type-checker gives us a 
"to-do" list of everything that must change 

–  Avoids introducing bugs 
–  The more of your spec that is in your types, the more the 

type-checker lists what to change when your spec changes 
 

Example: Changing the return type of a function 
 

Counter-argument: The to-do list is mandatory, which makes 
evolution in pieces a pain: can't "test what I've changed so far" 

 "To-do list" AKA "everything breaks at once" 



Coda 

•  Static vs. dynamic typing is too coarse a question 
–  No one programming language that will be "best" for all tasks. 

•  There are real trade-offs here you should know 
–  Allows for rational discussion informed by facts 

•  Ideally would have flexible languages that allow best-of-both-worlds 
–  Still mostly an open and active area of research 
–  Rare to find a language that lets you pick static/dynamic typing 

for different parts of a program. 
–  Version of Racket called "Typed Racket" that lets you do this. 


