
Programming Languages

Lecture 3

Two other ways to build lists

•  list function
–  Makes a list out of all arguments.
–  Arguments can be of any data type.
–  (list e1 e2 … en) evaluates e1 through en to values
v1 through vn; returns the list '(v1 v2 … vn).

•  append function
–  Concatenates values inside lists given as arguments.
–  Arguments must be lists.
–  (append e1 e2 … en) evaluates e1 through en to

values v1 through vn;
–  If v1 = (v11 v12 …) and v2 = (v21 v22 …) etc, then

return value is (v11 v12 … v21 v22 …).

Review
Huge progress in two lectures on the core pieces of Racket:
•  Variables

–  (define variable expression)
•  Functions

–  Build: (define (f x1 x2 …) e)
–  Use: (f e1 … en)

•  Pairs
–  Build: (cons e1 e2) OR '(v1 . v2)
–  Use: (car e), (cdr e)

•  Lists
–  Build: '() (cons e1 e2) OR '(v1 v2 v3 …)

(list e1 e2 …) (append e1 e2 …)
–  Use: (null? e) (car e) (cdr e)

Today

•  The big thing we need: local bindings
–  For style and convenience
–  A big but natural idea: nested function bindings

•  Why not having mutation (assignment statements) is a valuable

language feature
–  No need for you to keep track of sharing/aliasing,

which C++ (and sometimes Python) programmers must
obsess about

–  What makes global variables "bad" in most languages
(languages that allow mutation)

Let-expressions

The construct for introducing local bindings is just an expression,
so we can use it anywhere we can use an expression

•  Syntax:

–  Each vari is any variable name, each ei is any expression,
and e is also any expression.

•  Evaluation: Evaluate each ei, assign each ei to vari (all at
once) in an environment that includes the bindings from the
enclosing environment.

•  Result of whole let-expression is result of evaluating e in the
new environment.

 (let ((var1 e1) (var2 e2) …) e)

Silly examples
(define (silly1 z)
 (let ((x 5))
 (+ x z)))

; this one won't work!
(define (silly2 z)
 (let ((x 5) (answer (+ x z)))

 answer))

(define (silly2-fixed z)
 (let* ((x 5) (answer (+ x z)))
 answer))

Silly examples

silly4 is poor style but shows let-expressions are expressions
–  Could also use them in function-call arguments, parts of

conditionals, etc.
–  Also notice shadowing

(define (silly3 z)
 (let* ((x (if (> z 0) z 4)) (y (+ x 1)))
 (if (> x y) (* 2 x) (* y y))))

(define (silly4)
 (let ((x 1))
 (+
 (let ((x 2)) (+ x 1))
 (let ((y (+ x 2))) (+ y 1)))))

What’s new

•  What’s new is scope: contexts within a program where a
variable has a value.
–  Variables bound using let can be used in the body of the

let-expression.
–  Variables bound using let* can be used in the body of let-

expression and in later bindings in the same let*.
–  Bindings in let/let* shadow bindings of the same variable

name from the enclosing environment(s).

•  Nothing else is new!

Nested functions

•  Good style to define helper functions inside the functions they
help if they are:
–  Unlikely to be useful elsewhere
–  Likely to be misused if available elsewhere
–  Likely to be changed or removed later

•  A fundamental trade-off in code design: reusing code saves
effort and avoids bugs, but makes the reused code harder to
change later

•  But we need some additional syntax…

Nested functions

•  let and let* don't let you define function bindings using the same variations
that define does:
–  (define var expr) OK
–  (define (func x1 x2…) body-expr) OK
–  (let ((var expr) (var expr)…) expr) OK

•  Can't do (let (((func x1 x2…) body-expr) …) expr) NO

–  Note that define statements are not expressions, so they don't evaluate
to values.

–  Can't do (let ((func (define … NO

Solution: internal defines

(define	
 (f	
 (x1	
 x2	
 …	
 xn)	

	
 	
 (define	
 (f1	
 (y1	
 y2	
 …	
 yn)	
 expr)	

	
 	
 (define	
 (f2	
 (z1	
 z2	
 …	
 zn)	
 expr)	

	
 	
 expr)	

•  How does this not conflict with the idea of function bodies only
having one expression?

•  An additional define is NOT an expression.
–  Expressions can be evaluated to values.
–  Defines are not expressions, and have no values.

