COMP 360, Fall 2015, Project 1

You will write 11 Racket functions related to calendar dates. In all problems, a “date” is an Racket
list containing three values: the first part is the year, the second part is the month, and the third
part is the day. For example, January 16, 2013 would be represented by the list > (2013 1 16).
A “reasonable” date would have a positive year, a month between 1 and 12, and a day no greater
than 31 (or less depending on the month). However, most problems do not assume “reasonable”
dates; solutions should work for any date except where noted. A “day of year” is a number from 1
to 365 where, for example, 33 represents February 2. (We ignore leap years entirely.)

For the examples, we use ==> to mean “evaluates to.”

The sample solution is roughly 60-65 lines. See the last page for additional instructions.

1.

Write a function before? that takes two dates and evaluates to #t or #f. It evaluates to #t
if the first argument is a date that comes before the second argument. (If the two dates are
the same, the result is #£.)

Example: (before? (2013 4 2) (2013 5 1)) ==> #t

. Write a function number-in-month that takes a list of dates and a month (i.e., an integer)

and returns how many dates in the list are in the month.
Example:

(number-in-month ’((2013 1 2) (2012 2 1) (2015 2 3) (2013 12 1)) 2) ==> 2

. Write a function number-in-months that takes a list of dates and a list of months (i.e., a

list of integers) and returns the number of dates in the list of dates that are in any of the
months in the list of months. Assume the list of months has no number repeated (or if a
number is repeated then dates in that month are counted multiple times). Use your answer to
the previous problem.

Example:

(number-in-months ’((2013 1 2) (2012 2 1) (2015 2 3) (2013 12 1)) ’(12 2))

. Write a function dates-in-month that takes a list of dates and a month (i.e., an integer) and

returns a list holding the dates from the argument list of dates that are in the month.
Example:

(dates—-in-month ’((2013 1 2) (2012 2 1) (2015 2 3) (2013 12 1)) 2)
==> 2 ((2012 2 1) (2015 2 3))

. Write a function dates-in-months that takes a list of dates and a list of months (i.e., a list

of integers) and returns a list holding the dates from the argument list of dates that are in
any of the months in the list of months. Assume the list of months has no number repeated
(or if a number is repeated then dates in that month are in the result list multiple times). Use
your answer to the previous problem and append.

Example:

(dates-in-months ’((2013 1 2) (2012 2 1) (2015 2 3) (2013 12 1)) (12 2))
==> 7 ((2013 12 1) (2012 2 1) (2015 2 3))



10.

11.

. Write a function get-nth that takes a list and an integer n and returns the n* element of

the list where the car of the list is 1%¢. If the list has too few elements, your function should
apply car to the empty list, which will raise an exception.

Example:

(get-nth (7 56 38 1) 2) ==>5

Racket contains a string data type that is has similar functionality to strings in Python or
C++. For instance, a literal string in Racket is a sequence of characters enclosed by double
quotes. Write a function date->string that takes a date and returns a string of the form
April 11, 2011 (for example). Use the function string-append for concatenating strings
and the function number->string for converting an integer to a string. For producing the
month part, do not use a bunch of conditionals. Instead, use a list holding 12 strings and
your answer to the previous problem.

Example:

(date->string ’(2012 7 29)) ==> "July 29, 2012"

Write a function number-before-reaching-sum that takes an integer called sum (which you
can assume is non-negative) and a list of integers and returns an integer. It returns n if sum
is greater than or equal to the sum of the first n elements of the list, but not greater than or

equal to the sum of the first n + 1 elements. If sum is greater than the sum of all numbers in
the list, your function should apply car to the empty list, which will raise an exception.

Example:

(number-before-reaching-sum 130 ’(40 30 50 10 90)) ==> 4

. Write a function what-month that takes a day of year (i.e., an integer between 1 and 365)

and returns an integer representing the month that day is in (1 for January, 2 for February,
etc.). Use a list holding 12 integers and your answer to the previous problem.

Example:

(what-month 138) ==> 5

Write a function month-range that takes two days of the year dayl and day2 (integers)
and returns a list of integers (m1 mgo ... m,) where my is the month of day1, msy is the

month of day1+1, ..., and m, is the month of day day2. Note the result will have length
day2 - dayl + 1 or length 0 if dayl > day2.

Example:

(month-range 30 34) ==> (112 2 2)

Write a function earliest that takes a list of dates and returns the earliest date in the list.
The list is guaranteed to contain at least one date.

Example:

(earliest ’((2013 1 2) (2012 2 1) (2015 2 3) (2013 12 1))) ==> (2012 2 1)



Assessment

Solutions should be:
e Correct
e In good style, including indentation and line breaks

e Written using features discussed in class. In particular, you must not use any mutation
operations nor arrays (even though Racket has them).

Turn-in Instructions

e Put all your solutions in one file, projl_lastname firstname.rkt, where lastname is re-
placed with your last name, and firstname is replaced with your first name.

e Upload your file to Moodle before the project deadline.

Notes

e Yes, we already wrote get-nth in class, but this version starts the indices at 1, not 0. This
makes the date->string function simpler because we usually consider January to be month
1, not month 0.

e To write a literal list that contains (literal) sub-lists, do not use additional quotes:

Right: (1 2 (3 4))
Wrong: (1 2 ’(3 4))

e To write a literal list that contains string literals, you should use double quotes around each
individual string:

Right: ’("Hello" "World")
Wrong: °’(Hello World)

The easy way to remember this is that you still always need double quotes around every string
literal, just like in Python or C++. All the single quote does before a list is stops evaluating
the individual terms inside the list, so you can write '(1 2 3) without the number 1 being
interpreted as the name of a function.



