
CS	360	

Programming	Languages

Day	11	– Lexical	Scope	



What	is	scope?
• The	scope of	a	variable	is	the	region	of	a	computer	program	where	that	

variable	can	be	used.		(You	know	this.)

• Why	do	we	care?		(You	may	not	know	this.)

• Scoping	rules	of	a	programming	language	tell	us:
– How	to	find	the	value	of	a	variable		(aka	name	resolution).
– What	to	do	when	there	are	multiple	variables	with	the	same	name	in	a	

program.

• Many	scoping	rules	may	seem	"obvious"	(because	you've	been	programming	
for	a	while)	but	some	are	not.
– And	we'll	also	see	how	these	rules	are	implemented	under	the	hood	of	

Racket	(and	other	PLs).



Motivation	for	why	you	should	care

(define (make-adder y)
(lambda (x) (+ x y)))

(define add3 (make-adder 3))
(define add4 (make-adder 4))

(define z (add3 10))
(define w (add4 20))

• What	is	the	scope	of	each	x?
How	does	Racket	keep	the	two	versions	of	x separate?

• How	does	Racket	keep	the	two	versions	of	y separate?	
– And	how	are	they	available	after	they	"go	out	of	scope?"

(define x 5)
(define (add1 x) (+ x 1))
(define y (add1 7))



Very	important	concept
• We	know	that	the	body	of	a	function	can	refer	to	non-local	variables.	

– i.e.,	variables	that	are	not	explicitly	defined	in	that	function	or	passed	in	
as	arguments.

• So	how	does	a	language	know	where	to	find	values	of	non-local	variables?

Look	where	the	function	was	defined
(not	where	it	was	called)

• There	are	lots	of	good	reasons	for	this	(will	explain	later).

• Critically	important	to	understand	for	HW,	exams,	and	competent	
programming	now	and	in	the	future.

• This	concept	is	called	lexical	scope	(sometimes	also	called	static	scope).



Another	example

-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))

• Line	2	defines	a	function	that,	when	called,	evaluates	body	
(+ x y) in	environment	where	xmaps	to	1 and	ymaps	to	the	
argument	passed	in.

• Call	on	line	4:
– Creates	a	new environment	where	x	maps	to	2.
– Looks	up	f to	get	the	function	defined	on	line	2.
– Evaluates	(+ x y) in	the	new	environment,	producing	6
– Calls	the	function,	which	evaluates	the	body	in	the	old	

environment,	producing	7.



Closures
How	can	functions	be	evaluated	in	old	environments?

– The	language	implementation	keeps	them	around	as	necessary.
Can	define	the	semantics	of	(first-class)	functions	as	follows:
• A	function	value	has	two	parts:

– The	code (obviously)
– The	environment that	was	current	when	the	function	was	defined.

• This	value	is	called	a	function	closure or	just	closure.
• When	a	function	f is	called,	f's	code	is	evaluated	in	the	environment	that	

was	stored	alongside	that	code	when	the	closure	was	created.
– (The	environment	is	first	extended	with	extra	bindings	for	the	values	of	
f's	arguments.)



Example

• Line	2	creates	a	closure	and	binds	the	variable	f to	it:
– Code:	“take	argument	y and	have	body	(+ x y)”
– Environment:	“xmaps	to	1”	

• (Plus	whatever	else	has	been	previously	defined,	
including	f itself	in	case	of	recursion)

-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))



Behind	the	scenes:	environments	and	frames

• You	have	probably	drawn	diagrams	showing	variables	and	their	values.
– Memory	diagrams,	recursion	diagrams,	environment	diagrams,	etc.
– Most	PLs	implement	these	in	similar	ways	during	program	execution.

• Today	we're	going	to	focus	on	how	Racket	does	environment	diagrams.



Behind	the	scenes:	environments	and	frames

• An	environment	is	represented	using	frames.
• A	frame is	a	table	that	maps	variables	to	values.

– Each	frame	(except	the	"global"	or	"top-level"	frame)	also	has	a	pointer	
that	always	points	another	frame.

• When	a	variable	is	asked	to	be	looked	up	in	an	environment,	the	lookup	
always	starts	in	some	frame.
– If	the	variable	is	not	found	in	that	frame,	the	search	continues	wherever	

the	frame	points	to	(another	frame).
– If	the	search	ever	gets	to	a	frame	without	a	pointer	to	another	frame	(the	

global	frame)	and	the	variable	still	isn't	found,	we	report	an	error	that	
the	variable	is	undefined.



-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))

global  



-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define q (f 5))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))

global  
x   1 



global  
x   1
f    

args: y
code: (+ x y)

-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define q (f 5))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))



Rules	for	frames	and	environments
• Rule	1:

– Every	function	definition (including	anonymous	function	definitions)	
creates	a	closure	where
• the	code	part	of	the	closure	points	to	the	function's	code
• the	environment	part	of	the	closure	points	to	the	frame	that	was	
current	when	the	function	was	defined	(the	frame	we	are	currently	
using	to	look	up	variables)

global  
x   1
f    

args: y
code: (+ x y)



Rules	for	frames	and	environments
• Rule	2:

– Every	function	call creates	a	new	frame	consisting	of	the	following:
• the	new	frame's	table	has	bindings	for	all	of	the	function's	arguments	
and	their	corresponding	values

• the	new	frame's	pointer	points	to	the	same	environment	that	f's	
environment	pointer	points	to.



global  
x   1
f    

args: y
code: (+ x y)

-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define q (f 5))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))



global  
x   1
f    

args: y
code: (+ x y)

f     
y    5

-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define q (f 5))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))



global  
x   1
f    
q   6

args: y
code: (+ x y)

f     
y    5

-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define q (f 5))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x y))))



So	what?
Now	you	know	the	rules.		Next	steps:

• (Silly)	examples	to	demonstrate	how	the	rule	works	for	higher-order	
functions

• Why	the	other	natural	rule,	dynamic	scope,	is	a	bad	idea

• Powerful	idioms	with	higher-order	functions	that	use	this	rule
– This	lecture:	Passing	functions	to	functions	like	filter
– Next	lecture:	Several	more	idioms



Example:	Returning	a	function
• Trust	the	rules:	

– Evaluating	line	2	binds	f	to	a	closure.
– Evaluating	line	3	binds	g	to	a	closure	as	well.

• New	frame	is	created	for	the	call	to	f.
– Evaluating	line	4	binds	z	to	a	number.

• New	frame	is	created	for	the	call	to	g.

1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))



1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))

global  



1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))

global  
x   1
f    

args: y
code: (lambda (z)...)



1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))

global  
x   1
f    

args: y
code: (lambda (z)...)

f     
y    4



1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))

global  
x   1
f    

args: y
code: (lambda (z)...)

f     
y    4

args: z
code: (+ x y z)



1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))

global  
x   1
f    
g  

args: y
code: (lambda (z)...)

f     
y    4

args: z
code: (+ x y z)



1  (define x 1)
2  (define (f y) (lambda (z) (+ x y z)))
3  (define g (f 4))
4  (define z (g 6))

global  
x   1
f    
g  
z   11

args: y
code: (lambda (z)...)

f     
y    4

g     
z    6

args: z
code: (+ x y z)



Rules	for	frames	and	environments
• Rule	2a:

– Every	evaluation	of	a	"let"	expression	creates	a	new	frame	as	follows:
• the	new	frame's	table	has	bindings	for	all	of	the	let	expressions	
variables	and	their	corresponding	values

• the	new	frame's	pointer	points	to	the	frame	where	the	let	expression	
was	defined



Example:	Passing	a	function
• Trust	the	rules:

– Evaluating	line	1	binds	f	to	a	closure.

– Evaluating	line	2	binds	x	to	4.

– Evaluating	line	3	binds	h	to	a	closure.

– Evaluating	line	4	binds	z	to	a	number.

• First,	calls	f	(creates	new	frame),	then	evaluates	"let"	(creates	a	new	

frame),	then	calls	g	(creates	a	new	frame).

1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  
f   
x   4 

args: y
code: (let ((x...



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  
f   
x   4 

args: y
code: (let ((x...

args: y
code: (+ x y)



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  
f   
x   4 
h  

args: y
code: (let ((x...

args: y
code: (+ x y)



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  
f   
x   4 
h  

args: y
code: (let ((x...

f     
g    

args: y
code: (+ x y)



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  
f   
x   4 
h  

args: y
code: (let ((x...

f     
g    

args: y
code: (+ x y)

let     
x    3



1  (define (f g) (let ((x 3)) (g 2)))
2  (define x 4)
3  (define (h y) (+ x y))
4  (define z (f h))

global  
f   
x   4 
h  
z   6

args: y
code: (let ((x...

f     
g    

g     
y    2

args: y
code: (+ x y)

let     
x    3


