
CS 360
Programming Languages

Day 6

Today
• Type systems

– Rules for how types are determined in a language.

• Side effects
– ...and why they are not used in functional programming.

• Tail recursion
– Special speed-up built into many functional languages that allows

recursive functions (in many cases) to not cause stack overflows.

Type systems
• A type system is a set of rules that assigns types to variables and

expressions.

• The purpose of a type system is to reduce bugs in programs, but also
allow for abstraction, documentation, and optimization as well.

• Whole area of type theory in computer science studies the theoretical
underpinnings of type systems.

• We will focus on one aspect of type systems today: static type
checking vs dynamic type checking.

Declaring functions in C++ vs Python
C++ uses static type checking: most code can be checked at compile-
time to make sure rules involving types are not violated.

int double(int n) {

return 2 * n;

}

Python uses dynamic type checking: most code cannot be checked for
type errors at compile-time; this has be delayed until run-time.

def double(n):

return 2 * n

Dynamic type checking
• Racket (like most Scheme or Lisp dialects) is dynamically type

checked.

• Some characteristics of dynamic type checking:
– Values have types, but variables do not.

• A variable can have different types during its lifetime.

– Most type-error bugs cannot be found before the program is run,
and not until the offending line of code is encountered.

• Possible to write code with type errors that aren't discovered for
a long time, if buried in code that isn't executed often.

– Traditionally (but not always), dynamically-typed languages are
interpreted, whereas statically-typed languages are compiled.

Some good things about dynamic type checking

• Enables straight-forward polymorphism (enabling code to handle any
data type).
– Example: Calculating the length of a list.
(define (length lst)

(if (null? lst) 0 (+ 1 (length (cdr lst)))))

versus

int length_int_linkedlist(int_node* lst) {
if (lst->next == nullptr) return 0;
else return 1 + length_int_linkedlist(lst->next);

}

Easier to create flexible data structures
• In Racket, it's easy to create a list that can contain any other kind of data

structure:
– List of integers: '(1 2 3)
– List of booleans: '(#f #f #t #f #t)
– List of strings: '("a" "b" "c")
– List of mixed types: '("a" 42 #f)
– List of really mixed types: '(1 (3 #f) ("hi") 9 (1 2) ())

• Also, all of these lists will work with our length function!

• Mixing types in a single data structure is not easy in statically-typed
languages.

• In C++, arrays or vectors must all hold the same type.

"Manual" type-checking
• Dynamically-typed languages often have some way for the

programmer to discover the type of a variable.
• In Racket (all of these return #t or #f):

– number?

• also integer?, rational?, real?

– list?

– pair?

– string?

– boolean?

• Enables a single function to do different things depending on the type
of an argument.

Length of a list vs length of nested lists

(define (length-nested lst)

(cond ((null? lst) 0)

((list? (car lst))

(+ (length-nested (car lst))

(length-nested (cdr lst))))

(#t (+ 1 (length-nested (cdr lst))))))

Side effects
• In programming, a function has a side effect if it modifies some

state or has an observable interaction with functions outside of
itself (other functions or the outside world).

• Mutation is an example of a side effect.
– Also: printing to the screen, modifying files, etc

• Functional programming (in Racket, Scheme, Lisp) traditionally
avoids side effects as much as possible.
– Makes it much simpler to reason about how a program works.
– Without side effects, calling a function with a fixed set of

arguments is guaranteed to always return the same value.

Side effects
• In Racket, function bodies may contain more than one expression, if the

extra expressions come first and are evaluated only for their side
effects.
– In "pure" functional programming, you don't have side effects.
– But it's nice to have this facility at times.
– For debugging, can use (displayln expr) and (newline)

• Example:
(define (length lst)

(displayln lst)
(if (null? lst) 0 (+ 1 (length (cdr lst)))))

Tail Recursion and Accumulators

Recursion
Should now be comfortable with recursion (or at least after
tomorrow night...):

• No harder than using a loop (maybe?)

• Often much easier than a loop
– When processing a tree (e.g., evaluate an arithmetic

expression)
– Avoids mutation even for local variables

• Now:
– How to reason about efficiency of recursion
– The importance of tail recursion
– Using an accumulator to achieve tail recursion
– [No new language features here]

Call stack
While a program runs, there is a call stack of function calls that have
started but not yet returned.

– Calling a function f pushes an instance of f on the stack.
– When a call to f to finishes, it is popped from the stack.
– Common to most programming languages.

These stack frames store information such as
• the values of arguments and local variables
• information about “what is left to do” in the function (further

computations to do with results from other function calls)
Due to recursion, multiple stack frames may be calls to the same function.

Example (define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

(fact 3) => (* 3 _) (fact 3)

(fact 2)

(fact 3) => (* 3 _)

(fact 0)

(fact 1)

(fact 2) => (* 2 _)

(fact 1) => (* 1 _)

(fact 2) => (* 2 _)

(fact 3) => (* 3 _)

(fact 3) => (* 3 _) (fact 3) => (* 3 2)

(fact 2) => (* 2 1)

(fact 3) => (* 3 _)

(fact 0) => 1

(fact 1) => (* 1 1)

(fact 2) => (* 2 _)

(fact 1) => (* 1 _)

(fact 2) => (* 2 _)

(fact 3) => (* 3 _)

What's being computed
(fact 3)

=> (* 3 (fact 2))

=> (* 3 (* 2 (fact 1)))

=> (* 3 (* 2 (* 1 (fact 0))))

=> (* 3 (* 2 (* 1 1)))

=> (* 3 (* 2 1))

=> (* 3 2)

=> 6

Compare

(define (fact2 n)

(define (fact2-helper n acc)
(if (= n 0) acc

(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1))

Still recursive, more complicated, but the result of
recursive calls is the result for the caller (no
remaining multiplication)

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

(fact2 3) => _ (fact2 3)

(f2-h 3 1)

(fact2 3) => _

(f2-h 1 6)

(f2-h 2 3)

(f2-h 3 1) => _

(f2-h 2 3) => _

(f2-h 3 1) => _

(fact2 3) => _

(fact2 3) => _ (fact2 3) => _

(f2-h 3 1) => _

(fact2 3) => _

(f2-h 1 6) => _

(f2-h 2 3) => _

(f2-h 3 1) => _

(f2-h 2 3) => _

(f2-h 3 1) => _

(fact2 3) => _

(define (fact2 n)
(define (fact2-helper n acc)

(if (= n 0) acc
(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1))

(f2-h 0 6)

(f2-h 3 1) => _

(f2-h 2 3) => _

(f2-h 1 6) => _

(f2-h 0 6) => 6

(f2-h 1 6) => 6

(f2-h 2 3) => 6

What's being computed
(fact2 3)

=> (fact2-helper 3 1)

=> (fact2-helper 2 3)

=> (fact2-helper 1 6)

=> (fact2-helper 0 6)

=> 6

An optimization
It is unnecessary to keep around a stack frame just so it can get a callee’s
result and return it without any further evaluation.

Racket recognizes these situations and treats them differently:
– Pop the caller before the call, allowing callee to reuse the same

stack space.
– Uses same amount of memory as a loop.

Most, if not all functional language implementations do this optimization:
includes Racket, Scheme, LISP, ML, Haskell, OCaml…

What really happens on the call stack

(fact 3) (f2-h 3 1) (f2-h 2 3) (f2-h 1 6) (f2-h 0 6)

(define (fact2 n)

(define (fact2-helper n acc)
(if (= n 0) acc

(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1))

Tail recursion
• In a functional language, rewriting functions to be tail-recursive can be

much more efficient than "normal" recursive functions.

• In a tail-recursive function, all recursive calls must be the last thing the
calling function does.
– meaning no additional computation is done with the result of the

callee (the recursive call).

• Functional languages will automatically optimize these tail-calls so they
reuse the same stack space repeatedly.

Key to understanding tail recursion
• Most (singly-)recursive functions involve a recursive call and a

computation involving the result of that recursive call.
– e.g., for factorial, we multiply the result of the recursive call by n.
– Normally we think about doing the recursive call first and the

computation second.

• Tail-recursive functions do the computation first and the recursive
call second (last).

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

(define (fact2 n)
(define (fact2-helper n acc)

(if (= n 0) acc
(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1))

Methodology for tail-recursion
• Straight forward to turn a "normally" recursive function into a tail-

recursive one:
– Create a helper function that takes an accumulator.
– Old base case's return value becomes initial accumulator value.
– Final accumulator value becomes new base case return value.

(define (fact2 n)

(define (fact2-helper n acc)
(if (= n 0) acc

(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1))

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1)))))

Final accumulator
value becomes new
base case return
value.

Old base case's
return value
becomes initial
accumulator value.

Another example

(define (length lst)
(if (null? lst) 0

(+ 1 (length (cdr lst)))))

(define (length-tr lst)

(define (length-tr-helper lst acc)
(if (null? lst) acc

(sum-tr-helper (cdr lst) (+ 1 acc))))

(sum-tr-helper lst 0))

And another

(define (rev lst)
(if (null? lst) '()
(append (rev (cdr lst)) (list (car lst)))))

(define (rev-tr lst)

(define (rev-tr-helper lst acc)
(if (null? lst) acc
(rev-tr-helper (cdr lst) (cons (car lst) acc))))

(rev2-helper lst '()))

Actually much better

• For fact and length, tail-recursive versions are faster
than non-TR versions (though both are linear time)

• The non-tail recursive rev is quadratic because each
recursive call uses append, which must traverse the
first list to copy it
– And 1 + 2 + … + (length-1) is almost length * length / 2
– Moral: beware append, especially if 1st argument is result of a

recursive call
• cons is constant-time (and fast), so the accumulator

version rocks

(define (rev lst) ; Bad version (non T-R)
(if (null? lst) '()
(append (rev (cdr lst)) (list (car lst)))))

Tail-recursion == while loop with local variable

(define (fact-tr n)
(define (fact-tr-helper n acc)
(if (= n 0) acc
(fact-tr-helper (- n 1) (* acc n))))

(fact-tr-helper n 1))

def fact(n):
acc = 1
while n != 0:
acc = acc * n
n = n – 1

return acc

Tail-recursion == while loop with local variable

(define (length-tr lst)
(define (length-tr-helper lst acc)
(if (null? lst) acc
(length-tr-helper (cdr lst) (+ (car lst) acc))))

(length-tr-helper lst 0))

def length(lst):
acc = 0
while lst != []:
acc = lst[0] + acc
lst = lst[1:]

return acc

Tail-recursion == while loop with local variable

(define (rev-tr lst)
(define (rev-tr-helper lst acc)
(if (null? lst) acc
(rev-tr-helper (cdr lst) (cons (car lst) acc))))

(rev-tr-helper lst '()))

def rev(lst):
acc = []
while lst != []:
acc = [lst[0]] + acc
lst = lst[1:]

return acc

Always tail-recursive?
There are certainly cases where recursive functions cannot be evaluated
in a constant amount of space

Example: functions that process trees
– Lists can be used to

represent trees: '((1 2) ((3 4) 5))

In these cases, the natural recursive approach is the way to go
– You could get one recursive call to be a tail call, but rarely worth the

complication

1 2 5
3 4

Precise definition
If the result of (f x) is the “return value” for the enclosing function
body, then (f x) is a tail call

i.e., don't have to do any more processing of (f x) to end function

Can define this notion more precisely…
• A tail call is a function call in tail position
• The single expression (ignoring nested defines) of the body of a

function is in tail position.
• If (if test e1 e2) is in tail position, then e1 and e2 are in tail

position (but test is not). (Similar for cond-expressions)
• If a let-expression is in tail position, then the single expression of the

body of the let is in tail position (but no variable bindings are)
• Arguments to a function call are not in tail position
• …

Are these functions tail-recursive?
(define (get-nth lst n)

(if (= n 0) (car lst)

(get-nth (cdr lst) (- n 1))))

(define (good-max lst)

(cond

((null? (cdr lst))

(car lst))

(#t

(let ((max-of-cdr (good-max (cdr lst))))

(if (> (car lst) max-of-cdr)

(car lst) max-of-cdr)))))

Try these…

Write a tail-recursive sum function (i.e., a function that takes a list and
computes the sum of all the elements).

Write a tail-recursive max function (i.e., a function that returns the largest
element in a list).

Write a tail-recursive Fibonacci sequence function (i.e., a function that
returns the n'th number of the Fibonacci sequence).

(fib 1) => 1

(fib 2) => 1

(fib 3) => 2

(fib 4) => 3

(fib 5) => 5

In general, (fib n) = (+ (fib (- n 1)) (fib (- n 2)))

(define (sum-tr lst)
(define (sum-tr-helper lst acc)

(if (null? lst) acc
(sum-tr-helper (cdr lst) (+ (car lst) acc))))

(sum-tr-helper lst 0))

(define (max-tr lst)
(define (max-tr-helper lst max-so-far)

(cond
((null? lst) max-so-far)
((> max-so-far (car lst))

(max-tr-helper (cdr lst) max-so-far))
(#t (max-tr-helper (cdr lst) (car lst)))))

(maxtr-helper (cdr lst) (car lst)))

Fibonacci as a while loop
1 1 2 3 5 8 13

a b a+b
1 1 2

1 2 3

2 3 5

3 5 8

5 8 13

def fib(n):
ctr = 1
a = 1
b = 2
while ctr < n:
ctr += 1
old_a = a # hold onto value of a
a = b
b = old_a + b

return a

Fibonacci as a while loop
def fib(n):
ctr = 1
a = 1
b = 2
while ctr < n:
ctr += 1
old_a = a # hold onto value of a
a = b
b = old_a + b

return a

(define (fib-tr n)
(define (fib-helper a b ctr)

(if (= ctr n) a
(fib-helper b (+ a b) (+ ctr 1))))

(fib-helper 1 1 1))

def fib(n):
ctr = 1
a = 1
b = 2
while ctr < n:
ctr += 1
old_a = a # hold onto value of a
a = b
b = old_a + b

return a

