
CS 360 
Programming Languages

Day 10 - Motivation



Course Motivation
(Did you think I forgot? J)

• Why learn languages that are quite different from Python or C++?

• Why learn the fundamental concepts that appear in all (most?) 
languages?

• Why focus on functional programming?



What is the best kind of car?

What is the best kind of shoes?



Cars / Shoes
Cars are used for rather different things:

– Winning the Indy 500
– Taking kids to soccer practice
– Off-roading
– Hauling a mattress
– Getting the wind in your hair
– Staying dry in the rain

Shoes:
– Playing basketball
– Going to a dance
– Going to the beach



More on cars
• A good mechanic might have a specialty, but also understands how 

“cars” (not 2014 Honda Civics) work.
– And that the syntax---I mean upholstery color---isn’t essential

• A good mechanical engineer really knows how cars work, how to get 
the most out of them, and how to design better ones.

• To learn how cars work, it may make sense to start with a classic 
design rather than the latest model.
– A popular car may not be a good car for learning how cars work.



All cars are the same
• To make it easier for everyone to drive a car, it’s great that they all 

have common components, like steering wheels, brakes, windows, 
headlights, etc.
– Yet it’s still uncomfortable to learn a new one.

• And maybe PLs are more like cars, trucks, boats, and bikes.

• So are all PLs really the same…



Are all languages the same?
Yes:

– Any input-output behavior implementable in language X is 
implementable in language Y [Church-Turing thesis]

– Python, C++, Racket, and a language with one loop and three 
infinitely-large integers are “the same”

– Beware “the Turing tarpit”
Yes: 

– Same fundamentals reappear: variables, abstraction, recursive 
definitions, …

No:
– The primitive/default in one language is awkward in another



A note on reality
Reasonable questions when deciding to use/learn a language:
• What libraries are available for reuse?
• What can get me a summer internship?
• What does my boss tell me to do?
• What is the de facto industry standard?
• What do I already know?

CS 360 by design does not deal with these questions.
– You have the rest of your life for that.
– And the answers will be different in a few years anyway.



Why semantics and idioms
This course focuses as much as it can on semantics and idioms.

• Correct reasoning about programs, interfaces, and interpreters or 
compilers requires a precise knowledge of semantics.
– Not “I think that conditional expressions might work like this.”
– Not “I like curly braces more than parentheses.”
– Much of software development is designing precise interfaces; what 

a PL means is a really good example.

• Idioms make you a better programmer.
– Best to see in multiple settings, including where they shine.
– See future languages in a clearer light.



Hamlet
The play Hamlet:

– Is a beautiful work of art.
– Teaches deep, eternal truths.
– Is the source of some well-known sayings.
– Makes you a better person.

Continues to be studied (even in college) centuries later even though:
– The syntax is really annoying to many (yet rhythmic).
– There are more popular movies with some of the same lessons 

(just not done as well).
– Reading Hamlet will not get you a summer internship.



Functional Programming
Okay, so why do we spend so much time with functional languages, i.e., 
languages where:

– Mutation is unavailable or discouraged
– Recursion expresses all forms of looping and iteration
– Higher-order functions are very convenient

Because:
1. These features are invaluable for correct, elegant, efficient software 

(great way to think about computation)
2. Functional languages have always been ahead of their time
3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) …



Ahead of their time
All of these were dismissed as “beautiful, worthless, slow things PL 
professors make you learn in school”

• Garbage collection (now used in Python, Java, and most modern 
languages other than C/C++)

• Collections (i.e., lists) that can hold multiple data types at once
(Python, Java via generics, C++ through templates)

• XML for universal data representation (like Racket/Scheme/LISP)
• Higher-order functions (Python, Ruby, JavaScript, more recent 

versions of C++, …)
• Recursion (a big fight in 1960 about this – I’m told J)

Somehow nobody notices the PL people were right all along.



Recent Surge



Why a surge?
My best guesses:
• Concise, elegant, productive programming.
• JavaScript, Python, Ruby helped break the Java/C/C++ hegemony.

– And these functional languages do some things better.
• Avoiding mutation is the easiest way to make concurrent and parallel 

programming easier.
• Sure, functional programming is still a small niche, but there is so much 

software in the world today even niches have room.



Is this real programming?
• The way we're using Racket in this class can make the language seem 

almost “silly” precisely because lecture and homework focus on 
interesting language constructs.

• “Real” programming needs file I/O, string operations, floating-point, 
graphics, project managers, testing frameworks, threads, build 
systems, …
– Functional languages have all that and more.
– If we used C++ or Python the same way, those languages would 

seem “silly” too.



Summary
• No such thing as a “best” PL.

• There are good general design principles for PLs.

• A good language is a relevant, crisp interface for writing software.

• Software leaders should know PL semantics and idioms.

• Learning PLs is not about syntactic tricks for small programs.

• Functional languages have been on the leading edge for decades
– Ideas get absorbed by the mainstream, but very slowly.
– Meanwhile, use the ideas to be a better programmer in C++ and 

Python.


