CS 360
Programming Languages
Streams Wrapup

F scala ej

Swift

& Dart

JavaScript

Quick Review of Constructing Streams

e Usually two ways to construct a stream.

e Method 1: Use a function that takes a(n) argument(s) from which the next
element of the stream can be constructed.

(define (integers-from n)
(stream-cons n (integers-from (+ n 1))))
(define ints-from-2 (integers-from 2))

e When you use this technique, your code usually looks a lot like you have
infinite recursion.

e Often the code is very clear (easy to see how it works).

Quick Review of Constructing Streams

e Usually two ways to construct a stream.

e Method 2: Construct the stream directly by defining it in terms of a modified
version of another stream or itself.

(define ints-from-2-alt

(stream-cons 2
(stream-map (lambda (x) (+ x 1))
ints-from-2-alt)))

e This technique is fine, but can be harder to figure out how it works.

Quick Review of Constructing Streams

e Usually two ways to construct a stream.

e Method 2: Construct the stream directly by defining it in terms of a modified
version of another stream or itself.

(define ints-from-2-alt-alt

(stream-cons 2
(stream-map2 +
infinite-ones
ints-from-2-alt-alt)))

Fibonacci

e Method 1:

(define (make-fib-stream a b)

(stream-cons a (make-fib-stream b (+ a b))))

(define fibsl (make-fib-stream 0 1))

Fibonacci

e Method 2:

(define fibs
(stream-cons 0O
(stream-cons 1
(stream-map2 + (stream-cdr fibs) fibs))))

Sieve of Eratosthenes

e Start with an infinite stream of integers, starting from 2.
e Remove all the integers divisible by 2.

e Remove all the integers divisible by 3.

e Remove all the integers divisible by 5...etc

Sieve of Eratosthenes

(define (not-divisible-by s div)

(stream-filter
(lambda (x) (> (remainder x div) 0)) s))

(define (sieve s)
(stream-cons
(stream-car s)
(sieve (not-divisible-by s (stream-car s)))))

(define primes (sieve ints-from-2))

Stream wrapup

e Streams are an implementation of the Iterator abstraction.

e An lterator is something that lets the programmer traverse data in a ordered,
linear fashion.

e You've seen C++ iterators that let you iterate over vectors.

— There are also C++ iterators that let you iterate over sets, the entries in
maps, and lots of other data structures.

Stream wrapup

e Racket's streams obey the same semantics as C++ iterators.

Racket Stream C++ iterators

Get the current stream-car *it
element

Advance to the stream-cdr
next element

e You can easily create infinite iterators in C++, just like you can create infinite
streams in Racket.

e The concept of an iterator doesn't distinguish between iterating over a pre-

existing data structure and iterating over something that's being generated
on the fly.

Stream wrapup

e What to take away from all this:
e Most modern languages have one or more data types that encapsulate this
iteration concept.

— lterators: C++, Java

— Streams: Racket, Scheme, and most functional languages

— Generators: Python

— Functions: Almost any language
e (Can "fake" an iterator with a functions:

int nextInt () int nextInt(int old)
{ {

static int i 0; return old + 1;

i++;
return 1i;

Stream wrapup

for x in range(0, 100**100):
print (x)

— This code would never run if Python actually computed a list containing
10019 integers before starting to print them.

— Instead, range returns an iterator over the numbers that doesn't
generate the next integer until it's needed.

Python actually has the advantage here over Racket, because Racket could
never generate a stream of 100'°° integers.

e Why not?

And Now For Something Completely Different (But
Kind of Related)

Fibonacci

(define (make-fib-stream a b)
(stream-cons a (make-fib-stream b (+ a b))))
(define fibsl (make-fib-stream 0 1))

e More efficient (but less clear?) than

(define (fib n)
(cond ((=n 0) 0)
((=n 1) 1)
(#t (+ (fib (- n 1)) (fib (- n 2))))))

« How to get the best of both worlds?

Memoization

If a function has no side effects and doesn’t read mutable memory, no point
in computing it twice for the same arguments

— Can keep a cache of previous results

— Net win if (1) maintaining cache is cheaper than recomputing and (2)
cached results are reused

Similar to how we implemented promises, but the function takes arguments
so there are multiple “previous results”

For recursive functions, this memoization can lead to exponentially faster
programs

— Related to algorithmic technique of dynamic programming

(define fast-fib
(let ((cache '()))
(define (lookup-in-cache cache n)
(cond ((null? cache) #f)
((= (caar cache) n) (cadar cache))
(#t (lookup-in-cache (cdr cache) n))))

(lambda (n)
(1f (or (= n 0) (n 1)) n
(let ((check-cache (lookup-in-cache cache n)))
(cond ((not check-cache)
(let ((answer (+ (fast-fib (- n 1))
(fast-fib (- n 2)))))
(set! cache (cons (list n answer) cache))
answer))
(#t check-cache)))))))

Memoization in other languages

e Code for memoization is often easier with an explicit hashtable data
structure:

int fib(int n) {
static map<int, int> cache;
if (n < 2) return n;

if (cache.count(n) == 0) {
int ans = fib(n-1) + fib(n-2);
cache[n] = ans;

return ans;
} else return cache[n];

Memoization wrapup

e Memoization is related to streams in that streams also remember their
previously-computed values.

— Remember how promises save their results and return them instead of
re-computing?

e But memoization is more flexible because it works with any function.

e Memoization is a classic example of the time-space trade-off in CS:
— With memoization, we use more space, but use less time.

