
CS	360	
Programming	Languages

Streams	Wrapup

Quick	Review	of	Constructing	Streams
• Usually	two	ways	to	construct	a	stream.
• Method	1:	Use	a	function	that	takes	a(n)	argument(s)	from	which	the	next	

element	of	the	stream	can	be	constructed.

(define (integers-from n)

(stream-cons n (integers-from (+ n 1))))

(define ints-from-2 (integers-from 2))

• When	you	use	this	technique,	your	code	usually	looks	a	lot	like	you	have	
infinite	recursion.

• Often	the	code	is	very	clear	(easy	to	see	how	it	works).

Quick	Review	of	Constructing	Streams
• Usually	two	ways	to	construct	a	stream.
• Method	2:	Construct	the	stream	directly	by	defining	it	in	terms	of	a	modified	

version	of	another	stream	or	itself.

(define ints-from-2-alt

(stream-cons 2
(stream-map (lambda (x) (+ x 1))

ints-from-2-alt)))

• This	technique	is	fine,	but	can	be	harder	to	figure	out	how	it	works.

Quick	Review	of	Constructing	Streams
• Usually	two	ways	to	construct	a	stream.
• Method	2:	Construct	the	stream	directly	by	defining	it	in	terms	of	a	modified	

version	of	another	stream	or	itself.

(define ints-from-2-alt-alt

(stream-cons 2
(stream-map2 +

infinite-ones
ints-from-2-alt-alt)))

Fibonacci
• Method	1:

(define (make-fib-stream a b)

(stream-cons a (make-fib-stream b (+ a b))))

(define fibs1 (make-fib-stream 0 1))

Fibonacci
• Method	2:

(define fibs
(stream-cons 0
(stream-cons 1
(stream-map2 + (stream-cdr fibs) fibs))))

Sieve	of	Eratosthenes
• Start	with	an	infinite	stream	of	integers,	starting	from	2.
• Remove	all	the	integers	divisible	by	2.
• Remove	all	the	integers	divisible	by	3.
• Remove	all	the	integers	divisible	by	5…etc

Sieve	of	Eratosthenes

(define (not-divisible-by s div)

(stream-filter
(lambda (x) (> (remainder x div) 0)) s))

(define (sieve s)

(stream-cons

(stream-car s)

(sieve (not-divisible-by s (stream-car s)))))

(define primes (sieve ints-from-2))

Stream	wrapup
• Streams	are	an	implementation	of	the	Iterator abstraction.
• An	Iterator	is	something	that	lets	the	programmer	traverse	data	in	a	ordered,	

linear	fashion.
• You've	seen	C++	iterators	that	let	you	iterate	over	vectors.

– There	are	also	C++	iterators	that	let	you	iterate	over	sets,	the	entries	in	
maps,	and	lots	of	other	data	structures.

Stream	wrapup
• Racket's	streams	obey	the	same	semantics	as	C++	iterators.

• You	can	easily	create	infinite	iterators	in	C++,	just	like	you	can	create	infinite	
streams	in	Racket.

• The	concept	of	an	iterator	doesn't	distinguish	between	iterating	over	a	pre-
existing	data	structure and	iterating	over	something	that's	being	generated	
on	the	fly.

Get	the	current	
element

Advance	to	the	
next element

Racket	Stream

stream-car

stream-cdr

C++	iterators

*it

it++

Stream	wrapup
• What	to	take	away	from	all	this:
• Most	modern	languages	have	one	or	more	data	types	that	encapsulate	this	

iteration	concept.
– Iterators:	C++,	Java
– Streams:	Racket,	Scheme,	and	most	functional	languages
– Generators:	Python
– Functions:	Almost	any	language

• Can	"fake"	an	iterator	with	a	functions:

int nextInt()
{

static int i = 0;
i++;
return i;

}

int nextInt(int old)
{

return old + 1;
}

Stream	wrapup
•

for x in range(0, 100**100):

print(x)

– This	code	would	never	run	if	Python	actually	computed	a	list	containing	
100100 integers	before	starting	to	print	them.

– Instead,	range returns	an	iterator	over	the	numbers	that	doesn't	
generate	the	next	integer	until	it's	needed.

• Python	actually	has	the	advantage	here	over	Racket,	because	Racket	could	
never	generate	a	stream	of	100100 integers.

• Why	not?

And	Now	For	Something	Completely	Different	(But	
Kind	of	Related)

Fibonacci
(define (make-fib-stream a b)

(stream-cons a (make-fib-stream b (+ a b))))

(define fibs1 (make-fib-stream 0 1))

• More	efficient	(but	less	clear?)	than

(define (fib n)
(cond ((= n 0) 0)

((= n 1) 1)
(#t (+ (fib (- n 1)) (fib (- n 2))))))

• How to get the best of both worlds?

Memoization
• If	a	function	has	no	side	effects	and	doesn’t	read	mutable	memory,	no	point	

in	computing	it	twice	for	the	same	arguments
– Can	keep	a	cache of	previous	results
– Net	win	if	(1)	maintaining	cache	is	cheaper	than	recomputing and	(2)	

cached	results	are	reused

• Similar	to	how	we	implemented	promises,	but	the	function	takes	arguments	
so	there	are	multiple	“previous	results”

• For	recursive	functions,	this	memoization can	lead	to	exponentially faster	
programs
– Related	to	algorithmic	technique	of	dynamic	programming

(define fast-fib

(let ((cache '()))

(define (lookup-in-cache cache n)

(cond ((null? cache) #f)

((= (caar cache) n) (cadar cache))

(#t (lookup-in-cache (cdr cache) n))))

(lambda (n)

(if (or (= n 0) (= n 1)) n

(let ((check-cache (lookup-in-cache cache n)))

(cond ((not check-cache)

(let ((answer (+ (fast-fib (- n 1))

(fast-fib (- n 2)))))

(set! cache (cons (list n answer) cache))

answer))

(#t check-cache)))))))

Memoization in	other	languages
• Code	for	memoization is	often	easier	with	an	explicit	hashtable data	

structure:
int fib(int n) {

static map<int, int> cache;

if (n < 2) return n;

if (cache.count(n) == 0) {

int ans = fib(n-1) + fib(n-2);

cache[n] = ans;

return ans;

} else return cache[n];

}

Memoization wrapup
• Memoization is	related	to	streams	in	that	streams	also	remember	their	

previously-computed	values.
– Remember	how	promises	save	their	results	and	return	them	instead	of	

re-computing?
• But	memoization is	more	flexible	because	it	works	with	any	function.

• Memoization is	a	classic	example	of	the	time-space	trade-off	in	CS:
– With	memoization,	we	use	more	space,	but	use	less	time.

