
CS	360	
Programming	Languages

Day	15	–
Delayed	Evaluation	&	Streams



The	truth	comes	out!
• Everything	that	looks	like	a	function	call	in	Racket	is	not	necessarily	a	

function	call.

• Everything	that	looks	like	a	function	call	is	either

– A	function	call	(as	we	thought).

– Or	a	“special	form.”

• Special	forms:	define,	let,	lambda,	if,	cond,	and,	or,	…

• Why	can’t	these	be	functions?

• Recall	the	evaluation	model	for	a	function	call:

– (f e1 e2 e3…):	evaluate	e1 e2 …	to	obtain	values	v1 v2…,	then	
evaluate	f to	get	a	closure,	then	evaluate	the	body	of	the	closure	with	its	

arguments	bound	to	v1 v2…

– Why	would	this	not	work	for	defining	if?



Evaluation	strategies
• Every	programming	language	uses	an	evaluation	strategy	to	figure	out	two	

things:

– when to	evaluate	the	arguments	of	a	function	call	(or	other	operation),	

and

– what kind	of	value	to	pass	to	the	function.

• You	have	explored	the	"what	kind	of	value"	issue	in	CS142:

– pass	by	value	versus	pass	by	reference.

– There	are	others:	e.g.,	pass	by	name.

• When	to	evaluate	arguments?

– Most	PLs	use	eager	evaluation (args are	evaluated	completely	before	

being	passed	to	the	function).

– Today	we	will	explore	delayed or	lazy	evaluation.



Delayed	evaluation
• In	Racket,	function	arguments	are	eager.

Special	form	arguments	are	lazy.
– Delay	evaluation	of	the	argument	until	we	really	need	its	value.

• Why	wouldn’t	these	functions	work?

(define (my-if-bad x y z) 
(if x y z))

(define (fact-wrong n) 
(my-if-bad (= n 0)

1
(* n (fact-wrong (- n 1)))))



Thunks
• We	know	how	to	delay	evaluation:	put	expression	in	a	function	definition!

– Because	defining	a	function	doesn’t	run	the	code	until	later.

• A	zero-argument	function	used	to	delay	evaluation	is	called	a	thunk.
– As	a	verb: thunk the	expression.

• This	works	(though	silly	to	re-define	if like	this):

(define (my-if x y z) 
(if x (y) (z)))

(define (fact n) 
(my-if (= n 0)

(lambda () 1)
(lambda () (* n (fact (- n 1))))))



Try	this	one
• Write	a	function	called	while that	takes	two	arguments:

– a	thunk called	condition

– a	thunk called	body

• This	function	should	emulate	a	while	loop:	test	the	condition,	and	if	it's	
true,	run	the	body.		Then	test	the	condition again,	and	if	it's	still	true,	
run	the	body again.		Continue	until	the	condition is	false.

– You	will	likely	need	to	use	(begin).
– The	while	function	itself	may	return	whatever	you	want.

• Using	your	while	function,	write	a	while	loop	that	prints	the	numbers	1	to	10.

• Define	a	function	called	my-length that	takes	one	list	argument.	my-
length should	return	the	length	of	the	list	argument.		Use	your	while	loop.



Thunks
• Think	of	a	thunk as	a	“promise”	to	“evaluate	this	expression	as	soon	as	we	

really	need	the	value.”

• (define result 
(compute-answer-to-life-univ-and-everything))

– Would	take	a	really	long	time	to	calculate	result.

• (define result 
(lambda ()
(compute-answer-to-life-univ-and-everything)))

– Note	that	just	by	defining	a	variable	to	hold	the	result	doesn’t	mean	we	

“really”	need	it	yet.

• (if (= (result) 42) 
(do something) (do something else))

– Now	we	need	the	value,	so	we	compute	it	with	(result).



Avoiding	expensive	computations
Thunks let	you	skip	expensive	computations	if	they	aren’t	needed.

(define result 
(lambda ()

(compute-answer-to-life-univ-and-everything)))

(if (want-to-know-answer?) 
(display (result)) (display “save time”))

Don’t	compute	the	answer	to	life,	the	universe,	and	everything	unless	you	really	

want	to	know.

• Pro:	More	flexible	than	putting	the	computation	itself	inside	of	the	if	

statement.

• Con:	Every	time	we	call	(result),	we	compute	the	answer	again!		(Time	

waste,	assuming	the	answer	doesn’t	change)



; simulate a long computation time
(define (compute-answer-to-life) 
(begin (sleep 3) 42))

; create a thunk for the answer
(define answer 

(lambda () (compute-answer-to-life))))

(answer) ; 3 second pause, then 42
(answer) ; 3 second pause again, then 42



Best	of	both	worlds
• Assuming	our	expensive	computation	has	no	side	effects,	ideally	we	would:

– Not	compute	it	until	needed.

– Remember	the	answer	so	future	uses	don’t	re-compute	(memoization).

• This	is	known	as	lazy	evaluation.

• Languages	where	most	constructs,	including	function	calls,	work	this	way	are	

called	lazy	languages	(e.g.,	Haskell).

• Racket	by	default	is	an	eager	language,	but	we	can	add	support	for	laziness.



Best	of	both	worlds
• Here	is	our	strategy	for	introducing	optional	laziness	into	an	eager	language:

• Create	a	data	structure	called	a	promise to	represent	a	computation	that	

may	or	may	not	take	place	at	some	point	in	the	future.

– Promises	must	store	a	thunk (the	code	for	the	computation),

– something	representing	whether	or	not	the	thunk has	been	evaluated	

yet,

– and	the	result	of	the	thunk if	it	has	been	evaluated.

• Promises	are	not	specific	to	Racket	(though	they	appear	a	lot	in	similar	

functional	languages).		Other	languages	call	them	futures (e.g.,	Python,	Java,	
C++).



Implementing	promises
We	will	use	a	mutable	pair	to	implement	the	promise	data	structure.

The	car	will	always	be	a	boolean,	the	cdr will	be	one	of	two	things:

• #f in	car means	cdr is	an	unevaluated	thunk.

• #t in	car means	cdr is	the	result	of	evaluating	the	thunk.

(define (make-promise thunk)
(mcons #f thunk))

(define (eval-promise p)
(if (mcar p)

(mcdr p)
(begin (set-mcar! p #t)

(set-mcdr! p ((mcdr p)))
(mcdr p))))

make-promise:	create	a	promise	
data	type	for	the	thunk
argument.	

eval-promise:	return	
result	of	thunk (either	
run	it	and	save	the	
return	value	for	later,	or	
return	previously-saved	
value).



Using	promises

; simulate a long computation time
(define (compute-answer-to-life) 
(begin (sleep 3) 42))

; create a promise to hold a thunk for the answer
(define answer2

(make-promise
(lambda () (compute-answer-to-life))))

(eval-promise answer2) ; 3 second pause, then 42
(eval-promise answer2) ; instant 42



Racket	promises
• Making	our	own	promise	data	structure	is	still	clunky	because	we	have	to	

explicitly	wrap	the	thunk in	a	lambda.

• Racket	has	built-in	promises	(yay!)

– (delay e):	special	form	that	is	equivalent	to	our	make-promise.

• (No	extra	lambda	needed,	b/c	delay is	a	special	form).

– (force p):	equivalent	to	our	function	eval-promise.

• Evaluates	a	promise	(something	returned	by	delay)	to	compute	

whatever	the	value	of	e is.	Also	caches	the	value	so	future	forces	will	

be	very	fast,	even	if	the	evaluation	of	the	original	expression	is	slow.



(define (compute-answer-to-life) 

(begin (sleep 3) 42))

(define answer3 (delay (compute-answer-to-life)))

(force answer3) ; 3 second pause, then 42

(force answer3) ; instant 42



Lazy	lists,	or	streams
• One	common	use	of	delayed	evaluation	is	to	create	a	“lazy	list,”	or	a	

“stream.”

• By	convention,	a	stream	is	just	like	a	Racket	list	in	that	it	consists	of	two	

parts:	the	car	and	the	cdr.

– Only	difference	is	that	the	cdr is	lazy	(car	is	not	usually	lazy).

– In	other	words,	the	cdr is	a	promise	to	return	the	rest	of	the	stream	when	

its	really	needed.

• We	do	this	by	creating	a	function	that	creates	a	cons	cell	where	the	car	is	

normal	but	the	cdr is	lazy.



Streams
• stream-cons:	a	special	form	that	creates	a	new	pair	where	the	car	is	

eager	but	the	cdr is	lazy.

– alternatively,	think	of	this	as	creating	a	new	stream	from	a	new	first	

element	and	an	existing	stream.

– just	like	regular	cons	creates	a	new	list	from	a	new	first	element	and	an	

existing	list:

• (cons 1 '(2 3)) è '(1 2 3)

• (define (stream-cons first rest) 
(cons first (delay rest))

the	above	definition	is	correct	in	spirit,	though	wrong	in	syntax	because	we	

need	to	make	stream-cons a	special	form	so	that	rest won't	be	
evaluated	when	stream-cons	is	called.



Streams
(define-syntax-rule (stream-cons first rest) 

(cons first (delay rest)))

(define (stream-car stream)
(car stream))

(define (stream-cdr stream)
(force (cdr stream)))

(define the-empty-stream '())

(define (stream-null? stream)
(null? stream))

This	is	how	you	
create	a	special	form.



Let's	try	it	out


