
Late Binding;
OOP as a Racket Pattern

Today

Dynamic dispatch aka late binding aka virtual method calls
–  Call to self.m2() in method m1 defined in class C can

resolve to a method m2 defined in a subclass of C
–  Most unique characteristic of OOP

Need to define the semantics of objects and method lookup as
carefully as we defined variable lookup for functional programming

Then consider advantages, disadvantages of dynamic dispatch

Then encoding OOP / dynamic dispatch with pairs and functions
–  In Racket
–  Complement to learning lambdas/closures in C++

Resolving identifiers

The rules for "looking up" various symbols in a PL is a key part of
the language's definition

–  So discuss in general before considering dynamic dispatch

•  Racket: Look up variables in the appropriate environment
–  Key point of closures' lexical scope is defining "appropriate"

•  Java:
–  Lexical scoping like Racket
–  But also have instance variables, class variables, and

methods!
•  All of these combined with inheritance "break" lexical

scope!

class A { int x; int method() { … } }!
class B extends A { int method() { … } }!
in some main method somewhere:
B b = new B();!
b.x = 17;!
 // lookup x … where?!
 // - in current environment -> not found!
 // - in "environment for class B" -> not found!
 // - rule to look in "enclosing environment"!
 // doesn't help here either.!

class A { int x; int method() { … } }!
class B extends A { int method() { … } }!
in some main method somewhere:
A waitWhat;!
if (Math.random() > .5)!
 waitWhat = new A();!
else!
 waitWhat = new B();!
whatWhat.method()!
•  Where do we look up method?
•  Lexical scoping rules don't help us here, because lexical scoping

resolves all variable/function references at compile-time. At
compile-time, we don't know what's going to happen.

Takeaway:

Looking up the value for a field
or the code for a method is
different looking up a "regular"
variable or "regular" function.

Java method lookup
The semantics for method calls

e0.m(e1,…,en)
1.  Evaluate e0, e1, …, en to objects obj0, obj1, …, objn

–  As usual, may involve looking up this, variables, fields, etc.
2.  Let C = the class of obj0 (every object has a class)
3.  [Complicated rules to pick "the best m" using the types of e0, e1, …,

en]
–  Rules similar to Ruby except for this static overloading

4.  Evaluate body of method picked:
–  With formal arguments bound to obj1, …, objn
–  With this bound to obj0 -- this implements dynamic dispatch!

The punch-line again

e0.m(e1,…,en)

To implement dynamic dispatch, evaluate the method body with
this mapping to the receiver

•  That way, any this calls in the body use the receiver's class,

everything works.

Comments on dynamic dispatch

•  C++ only uses dynamic dispatch on virtual functions.
–  That's why in that weird example from a few weeks ago we had

the "wrong" function being called.
•  Java always does dynamic dispatch.

•  More complicated than the rules for closures
–  Have to treat this specially
–  May seem simpler only because you learned it first
–  Complicated doesn't imply superior or inferior

•  Depends on how you use it…
•  Overriding does tend to be overused

The OOP trade-off

Any method that makes calls to overridable methods can have its
behavior changed in subclasses even if it is not overridden

–  Maybe on purpose, maybe by mistake

•  Makes it harder to reason about "the code you're looking at"

–  Can avoid by disallowing overriding (Java final) of helper
methods you call

•  Makes it easier for subclasses to specialize behavior without
copying code
–  Provided method in superclass isn't modified later

Manual dynamic dispatch
Rest of lecture: Write Racket code with little more than pairs and
functions that acts like objects with dynamic dispatch

Why do this?

–  (Racket actually has classes and objects even though not
everything is an object)

•  Demonstrates how one language's semantics is an idiom in
another language

•  Understand dynamic dispatch better by coding it up
–  Roughly similar to how an interpreter/compiler would do it

