Solution: locks

* Every object has a lock associated with it.
— Sometimes called an intrinsic lock or monitor lock.
— Note: separate locks for each instance!

* Alock can be owned by at most one thread.
— Sometimes owned by no threads.

* Prevent memory inconsistencies by forcing
methods to own the object's lock before

running code that needs exclusive access to that
object's fields.



Locks

* Locks are not objects themselves.

e Access to them is controlled through blocks of
code that are declared as "synchronized."



* When a thread T1 attempts to enter a block of
code that is synchronized on object x, T1 tries
to acquire x's lock.

— If x's lock is available, then T1 acquires the lock
and runs the block of code.

— If x's lock is not available (owned by another
thread), then the scheduler switches to a different
thread. At some point, the scheduler will switch
back to T1 and try again to acquire the lock.

* When T1 leaves the synchronized block, x's
lock is released.



* First kind of synch block: synchronized
method.

* Use the word synchronized before the
return type in the declaration line of a

method.

 When a thread calls x.method(), the thread
will try to acquire x's lock.



Class C {

synchronized void methodA() { }
synchronized void methodB() { }

(@]
»
I
®
=
2
<
I

new C();
Thread 1: Thread 2:

x.methodA () x.methodA ()
// 2 fails to acquire x's lock

// 1 acquires x's lock.

// 1 starts running methodA
// 1 finishes methodA

// 1 releases x's lock

acquires x's lock
starts running methodA
finishes methodA
releases x's lock




Class C {

void synchronized methodA() { }
void synchronized methodB() { }

(@]
»
I
®
=
2
<
I

new C();
Thread 1: Thread 2:

x.methodA () x.methodB ()
// 2 fails to acquire x's lock

// 1 acquires x's lock.

// 1 starts running methodA
// 1 finishes methodA

// 1 releases x's lock

acquires x's lock
starts running methodB
finishes methodB
releases x's lock




Class C {
void synchronized methodA() { }
void synchronized methodB() { }

M
I
=
®
2
!
s
I

new C();

Thread 1: Thread 2:

x.methodA () y .methodA ()

acquires x's lock. // 2 acquires y's lock.
starts running methodA // 2 starts running methodA
finishes methodA // 2 finishes methodA

// 1
// 1
// 1
// 1

releases x's lock // 2 releases y's lock




* |f T1 owns x's lock, (presumably because T1
has already synchronized on x), T1 may enter
another synchronized method of x.

* |[n other words, if you try to acquire a lock you
already own, nothing bad happens.

— Happens when synch blocks call other functions
that have synch blocks.



* CPU can still stop a thread T1 in the middle of

a synch block and switch to a different thread
T2.

* |f T2 happens to need a lock owned by T1,
then the scheduler will immediately switch
again.



Fix bank account



e Also can have synchronized blocks (inside any
method):

class C {

public void method() {
synchronized (y) { .. }

}

in main: C x = new C(); x.method()

 When a thread tries to call x.method(), the
thread will try to acquire the lock for some
other object y, not x.






Assume we have five Fork instances.

Inside each philosopher's run method:
synchronized (fork to the left) {
synchronized (fork to the right) {
// eat spaghetti



Deadlock




Remedies

* Resource hierarchy: assign numbers to the
forks; can't request a higher-numbered for
before a lower-numbered fork.

* Central arbiter: Write a waiter class that
manages all the forks. The waiter will never
give out forks in a way that will allow
deadlock.



Other issues

e Starvation

— A thread is consistently denied access to a shared
resource by other "greedy" threads.

— Example: synch methods that take a long time to run
and are called frequently.
* Livelock

— Thread A takes some action in response to another
Thread B in attempt to avoid a problem.

— Thread B then response to A's action.

— Back and forth: neither thread is deadlocked, but they
are too busy responding to each other to get anything
else done.



Coordination

Imagine a restaurant with a chef and a waiter.

The chef's job is to prepare food and place the
food in the pickup area.
— Apparently this area is called the "line."

The pickup area can only hold one order at a
time.

The waiter's job is to take the food from the
pickup area to the tables.



* Class PickupArea models the waiting area for
an order. Holds the order number as an int.

* Class Chef is a thread that when started, will
cook ten orders back to back (sleeping
randomly between them) and place them in
the waiting area.

e Class Waiter is a thread that when started, will
pick up ten orders from the waiting area and
serve them (sleeping randomly between
them).



e Waiter doesn't wait for chef to cook meals
before serving them.

— The waiter might serve the same meal over and

over, or sometimes will serve order O, which
means there is no meal!

* Chef doesn't wait for the pickup area to be
empty before cooking the next meal.
— The chef might cook multiple orders and put them

all in the waiting area back to back, overwriting
the existing order that was already there.



2 part solution

e Part A:

— Synchronize on the pickup area so that the waiter
and chef don't step on each other's toes.

* Part B:

— Have the two threads communicate about when
orders are ready.



Solution: Guarded blocks

* A guarded block is a block of code that cannot
execute until a condition is true.

* Chef should not cook a new order until the
pickup area is free.

 Waiter should not pickup an order unless
there is one waiting in the pickup area.



In Chef.run():
while (pickupArea.orderNumber > 0) { }

In Waiter.run():
while (pickupArea.orderNumber == 0) { }

Let's try.



Busy waiting is bad, mm'kay?

* Never wait on a condition with an empty
while loop.

* If a thread cannot continue until a condition is
true, we need to tell the thread to wait
without wasting CPU cycles.



Every object has two methods, called wait()
and notifyAll()

Inside a synchronized block on object x, a
thread may call wait() and/or notifyAll()

x.wait() suspends the current thread until it
receives a wakeup call from x.notifyAll()

x.notifyAll() wakes up all the threads that are
waiting on object x.



Most common idiom:

T1:

while (!condition) { x.wait(); }
T2:

condition = true; x.notifyAll();



Try it out



Why does this work?

e |f T1 holds x's lock and calls x.wait(), then x's
lock is temporarily released!

 Therefore, another thread T2 can acquire x's
lock to fix the condition that T1 is waiting on.

* Busy waits and sleep()s don't release locks, so
our first fix just got stuck forever waiting.



Bank account vs Restaurant

 BankAccount worked with synchronized
methods only because if we try to withdraw
more money than we have, the withdraw()

method simply fails.



Bank account vs Restaurant

* Chef & Waiter needs wait/notifyAll because:

— We don't want the Chef to lose an order (fail) if
there's already an order waiting to be picked up
(aka when the Chef is ahead of the Waiter)

— We don't want the Waiter to pick up the same
order twice (fail) if there's not a new order waiting
to be picked up (aka when the Waiter is ahead of
the Chef).



