
Programming Languages

Environment Diagrams Again, Mutation,
Pairs, Thunks, Laziness, Streams,

Memoization

Adapted from Dan Grossman’s PL class,
U. of Washington

Env. Diagram practice, now with mutation!

•  Get into groups.
•  Draw the environment diagram that would result from running

the code on the next slide.

(define (new-stack)!
 (let ((the-stack '()))!
 (define (dispatch method-name)!
 (cond ((eq? method-name 'empty?) empty?)!
 ((eq? method-name 'push) push)!
 ((eq? method-name 'pop) pop)!
 (#t (error "Bad method name"))))!
 (define (empty?) (null? the-stack))!
 (define (push item) (set! the-stack (cons
item the-stack)))!
 (define (pop) !
 (if (null? the-stack) (error "Can't pop an
empty stack")!
 (let ((top-item (car the-stack)))!
 (set! the-stack (cdr the-stack))!
 top-item)))!
 dispatch)) !
(define S (new-stack))!
((S ‘push) 5)!

Today

Primary focus: Powerful programming idioms related to:
–  Delaying evaluation (using functions)
–  Remembering previous results (using mutation)
Lazy evaluation, Streams, Memoization

But first need to discuss:
–  Review of mutation in Racket
–  mcons cells (mutable pairs)

Set!

•  Yes, Racket really has assignment statements
–  But used only-when-really-appropriate!

•  For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e
–  Any code using this x will be affected
–  Like C++/Python’s x = e

•  Once you have side-effects, sequences are useful:

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:
–  Environment for closure determined when function is defined,

but body is evaluated when function is called

(define b 3)
(define f (lambda (x) (* 1 (+ x b))))
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4)) ; 9
(define w c) ; 7

Top-level

•  Mutating top-level definitions is particularly problematic
–  What if any code could do set! on anything?
–  How could we defend against this?

•  A general principle: If something you need not to change might
change, make a local copy of it. Example:

 Could use a different name for local copy but do not need to

(define b 3)
(define f
 (let ([b b])
 (lambda (x) (* 1 (+ x b)))))

But wait…

•  Simple elegant language design:
–  Primitives like + and * are just predefined variables bound to

functions
–  But maybe that means they are mutable
–  Example continued:

–  Even that won’t work if f uses other functions that use things

that might get mutated – all functions would need to copy
everything mutable they used

(define f
 (let ([b b]
 [+ +]
 [* +])
 (lambda (x) (* 1 (+ x b)))))

No such madness

In Racket, you do not have to program like this
–  Each file is a module
–  If a module does not use set! on a top-level variable, then

Racket makes it constant and forbids set! outside the module
–  Primitives like +, *, and cons are in a module that does not

mutate them

In Scheme, you really could do (set! + cons)
–  Naturally, nobody defended against this in practice so it would

just break the program

Showed you this for the concept of copying to defend against mutation

A bit about cons
cons just makes a pair

–  By convention and standard library, lists are nested pairs
that eventually end with ‘()

Passing an improper list to functions like length is a run-time error

So why allow improper lists?
–  Pairs are useful (can make another data structures)

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define hi (cdr (cdr pr)))
(define false (list? pr))
(define true (pair? pr))
(define lst (cons 1 (cons #t (cons "hi" ‘()))))
(define hi2 (car (cdr (cdr pr))))

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?
–  In Racket you can’t (major change from Scheme)
–  This is good

•  List-aliasing irrelevant
•  Implementation can make a fast list? since listness is

determined when cons cell is created

This does not mutate the contents:

–  Like C++: x = Cons(42,null), not x.car = 42

(define x (cons 14 ‘()))
(define y x)
(set! x (cons 42 ‘()))
(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them later in
lecture), Racket provides them too:

–  mcons
–  mcar
–  mcdr
–  mpair?
–  set-mcar!
–  set-mcdr!

Run-time error to use mcar on a cons cell or car on a mcons cell

You’ve been lied to
•  Everything that looks like a function call in Racket is not

necessarily a function.
•  Everything that looks like a function is either

–  A function call (as we thought)
–  Or a “special form”

•  Special forms: define, let, lambda, if, cond, and, or, …
•  Why can’t these be functions?
•  Recall the evaluation model for a function call:

–  (f e1 e2 e3…): evaluate e1 e2 … to obtain values v1 v2…,
then evaluate f to get a closure, then evaluate the code of
the closure with its arguments bound to v1 v2…

–  Why would this not work for defining if?

Delayed evaluation
In Racket, function arguments are eager (call by value)
Special form arguments are lazy (call by need)

–  Delay evaluation of the argument until we really need its value

Why wouldn’t these functions work?

(define (my-if-bad x y z)
 (if x y z))

(define (fact-wrong n)
 (my-if-bad (= n 0)
 1
 (* n (fact-wrong (- n 1)))))

Thunks
We know how to delay evaluation: put expression in a function definition!

–  Because defining a function doesn’t run the code until later.

A zero-argument function used to delay evaluation is called a thunk
–  As a verb: thunk the expression

This works (though silly to re-define if like this):

(define (my-if x y z)
 (if x (y) (z)))

(define (fact n)
 (my-if (= n 0)
 (lambda() 1)
 (lambda() (* n (fact (- n 1))))))

