
Programming Languages

Thunks, Laziness, Streams, Memoization

Adapted from Dan Grossman’s PL class,
U. of Washington

You’ve been lied to
•  Everything that looks like a function call in Racket is not

necessarily a function.
•  Everything that looks like a function is either

–  A function call (as we thought)
–  Or a “special form”

•  Special forms: define, let, lambda, if, cond, and, or, …
•  Why can’t these be functions?
•  Recall the evaluation model for a function call:

–  (f e1 e2 e3…): evaluate e1 e2 … to obtain values v1
v2…, then evaluate f to get a closure, then evaluate the
code of the closure with its arguments bound to v1 v2…!

–  Why would this not work for defining if?

Delayed evaluation
In Racket, function arguments are eager (call by value)
Special form arguments are lazy (call by need)

–  Delay evaluation of the argument until we really need its value

Why wouldn’t these functions work?

(define (my-if-bad x y z)
 (if x y z))

(define (fact-wrong n)
 (my-if-bad (= n 0)
 1
 (* n (fact-wrong (- n 1)))))

Thunks
We know how to delay evaluation: put expression in a function definition!

–  Because defining a function doesn’t run the code until later.

A zero-argument function used to delay evaluation is called a thunk
–  As a verb: thunk the expression

This works (though silly to re-define if like this):

(define (my-if x y z)
 (if x (y) (z)))

(define (fact n)
 (my-if (= n 0)
 (lambda() 1)
 (lambda() (* n (fact (- n 1))))))

Try this one

•  Write a function called while that takes two arguments:
–  a thunk called condition-thunk
–  a thunk called body-thunk

•  This function should emulate a while loop: test the condition-
thunk, and if it's true, call the body thunk. Then test the
condition thunk again, and if it's still true, run the body thunk.

•  Write a while loop that prints the numbers 1 to 10.
•  Define a function called my-length that takes one argument: a

list. my-length should return the length of the list argument.
Use a while loop.

Thunks
•  Think of a thunk J as a “promise” to “evaluate this expression as

soon as we really need the value.”
•  (define result  

 (compute-answer-to-life-univ-and-everything))!
–  Would take a really long time to calculate result.

•  (define result  
 (lambda ()  

!(compute-answer-to-life-univ-and-everything)))!
–  Note that just by defining a variable to hold the result doesn’t

mean we “really” need it yet.
•  (if (= (result) 42)  

 (do something) (do something else))!
–  Now we need the value, so we compute it with (result).

Avoiding expensive computations
Thunks let you skip expensive computations if they aren’t needed
(define result  
 (lambda ()  

!(compute-answer-to-life-univ-and-everything)))!
(if (want-to-know-answer?)  
 (display (result)) (display “too bad”))!

Don’t compute the answer to life, the universe, and everything unless
you really want to know.
•  Pro: More flexible than putting the computation itself inside of the if

statement.
•  Con: Every time we call (result), we compute the answer again!

(Time waste, assuming the answer doesn’t change)

; simulate a long computation time
(define (compute-answer-to-life)
 (begin (sleep 3) 42))

; create a thunk for the answer
(define answer
 (lambda () (compute-answer-to-life))))

(answer) ; 3 second pause, then 42
(answer) ; 3 second pause again, then 42

Best of both worlds

Assuming our expensive computation has no side effects, ideally
we would:

–  Not compute it until needed
–  Remember the answer so future uses don’t re-compute

•  Known as lazy evaluation

Languages where most constructs, including function calls, work
this way are lazy languages

–  Haskell

Racket and Scheme are eager languages, but we can add support
for laziness.

Delay and force
(define (my-delay thunk)
 (mcons #f thunk))

(define (my-force p)
 (if (mcar p)

 (mcdr p)
 (begin (set-mcar! p #t)

 (set-mcdr! p ((mcdr p)))
 (mcdr p))))

 An data structure represented by a mutable pair
•  #f in car means cdr is an unevaluated thunk
•  This data type is called a “promise.” (not language-specific)

–  A promise represents a computation that is either already finished (in
which case we remember the answer), or not executed yet (in which
case we have some code [as a thunk] for when we need the answer).

my-delay: create a promise
data type for the thunk
argument.

my-force: return
result of thunk
(either run it and
save the return value
for later, or return
previously-saved
value).

Using promises
; simulate a long computation time
(define (compute-answer-to-life)
 (begin (sleep 3) 42))

; create a promise to hold a thunk for the answer
(define answer2

(my-delay
 (lambda () (compute-answer-to-life))))

(my-force answer2) ; 3 second pause, then 42
(my-force answer2) ; instant 42

Racket promises

•  Making our own promise data structure is still clunky because
we have to explicitly wrap everything in a lambda.

•  Racket has built-in promises (yay!)
–  (delay e): special form that creates a promise to evaluate

expression e as soon as its needed.
•  (No extra lambda needed, b/c delay is a special form).

–  (force p): evaluates a promise (something returned by
delay) to compute whatever the value of the original
expression is. Also caches the value so future forces will be
very fast, even if the evaluation of the original expression is
slow.

(require racket/promise)!
(define (compute-answer-to-life) !
 (begin (sleep 3) 42))!
!
(define answer3 (delay (compute-answer-to-life)))!
(force answer3) ; 3 second pause, then 42!
(force answer3) ; instant 42!

Lazy lists, or streams

•  One common use of delayed evaluation is to create a “lazy list,”
or a “stream.”

•  A stream is just like a list (a Racket list) in that it consists of two
parts: the car and the cdr.
–  Only difference is that the cdr is lazy (car is not usually lazy)
–  In other words, the cdr is a promise to return the rest of the

stream when its really needed.

•  We need a new function to make a pair where the car is normal
but the cdr is lazy.

Streams
•  stream-cons: a special form that creates a new pair where the

car is eager but the cdr is lazy
–  alternatively, think of this as

creating a new stream from a new first element and an
existing stream

–  just like regular cons creates a new list from a new first
element and an existing list:

•  (cons 1 '(2 3 4 5)) è '(1 2 3 4 5)

•  (define (stream-cons first rest)  
 (cons first (delay rest))  
the above definition is correct in spirit, though wrong in syntax
because we need to make stream-cons a special form so that
rest will be thunked automatically.

Streams
(define the-empty-stream '())!
!
(define (stream-null? stream)!
 (null? stream))!
!
(define (stream-car stream)!
 (car stream))!
!
(define (stream-cdr stream)!
 (force (cdr stream)))!

Let's try it out

