
Today's plan

•  Introduce OOP concepts from the ground up using Java
•  Lots of things will be familiar from C++
•  Some things will be different

public class Point!
{!
 private int x, y;!
 public Point(int x, int y) { !
 this.x = x; this.y = y; !
 }!
 public int getX() { return x; }!
 public int getY() { return y; }!
 public void setX(int x) { this.x = x; }  
 public void setY(int y) { this.y = y; }!
 public double distFromOrigin() {!
 return Math.sqrt(x * x + y * y)!
 }!
}!

Subclassing

•  A class definition has a superclass (Object if not specified)

•  The superclass affects the class definition:
–  Class inherits all field declarations from superclass
–  Class inherits all private method definitions from superclass

•  Code within the subclass cannot directly access any
private fields or methods.

–  But class can override method definitions as desired

class ColorPoint extends Point { … }

public class ColorPoint extends Point!
{!
 private Color color;!
 public ColorPoint(int x, int y, Color c) {!
 super(x, y); // call the superclass constructor!
 this.color = c;!
 }!
 public Color getColor() { return color; }!
 public void setColor(Color c) { this.color = c; }!
}!

An object has a class

•  Using instanceof can indicate bad OO style.
–  If you're using it to do something different for different objects types,

you probably meant to write a method and have subclasses override
the method.

•  instanceof is an example of using reflection
–  Reflection is the ability for a computer program to be able to examine

its structure and behavior at run-time.

Point p = new Point(0, 0);
ColorPoint cp = new ColorPoint(0, 0, Color.red)

/* instanceof is a keyword that returns true
 if a variable is an instance of a class. */

p instanceof Point // true
cp instanceof ColorPoint // true
cp instanceof Point // true

Why subclass?

•  Instead of creating ColorPoint, could add methods to Point
–  That could mess up other users and subclassers of Point

public class Point {
 private int x, y;
 private Color color;
 …

 public Point(x, y) {
 // what does color get set to?
 }
}

Why subclass?
•  Instead of subclassing Point, could copy/paste the methods

–  Means the same thing if you don't use instanceof, but of
course code reuse is nice

public class ColorPoint {
 private int x, y;
 private Color color;
 …
}

ColorPoint cp = new ColorPoint(whatevs)
if (cp instanceof Point) {
 // do pointy things
}

Why subclass?
•  Instead of subclassing Point, could use a Point instance variable

inside of ColorPoint.
–  Define methods to send same message to the Point
–  This is called object composition; expresses a "has a"

relationship.
–  But for ColorPoint, subclassing makes sense: less work and

can use a ColorPoint wherever code expects a Point

public class ColorPoint {
 private Point point;
 private Color color;
 public setX(int x) { point.setX(x); }
 …
}

Is-a vs has-a

•  OO beginners tend to overuse inheritance (the is-a relationship).
•  OO inheritance is notoriously tricky to get right sometimes (e.g.,

writing methods that test for equality)
–  boolean equals(Point a, Point b)
–  What if a & b can be Points or ColorPoints?

•  Many real-world relationships can be expressed using is-a or
has-a, even if the most natural way seems to be is-a.
–  ColorPoint could be written using object composition.

Circle and ellipse problem

•  What should the relationship be between a Circle class and an
Ellipse class?

Circle and ellipse problem

•  Circles are specific types of ellipses, so a Circle is-a Ellipse.
public class Ellipse { !
 private int radiusX, int radiusY; !
 public void setRadiusX(int rx) { radiusX = rx; }!
 public void setRadiusX(int rx) { radiusY = ry; }!
 public int getRadiusX() { return radiusX; }!
 public int getRadiusY() { return radiusY; }!
}!
public class Circle extends Ellipse {!
 … !
}

Circle and ellipse problem

•  Circles are specific types of ellipses, so a Circle is-a Ellipse.

•  But now Circle has a setRadiusX() method.

•  Furthermore, what would that method's implementation look
like?

Circle and ellipse problem

•  Different solution: make Ellipse a subclass of Circle.
–  "An Ellipse is a Circle with an extra radius field."

public class Circle { !
 private int radius; !
 public void setRadius(int r) { radius = r; }!
 public int getRadius() { return radius; }!
}!
public class Ellipse extends Circle {!
 private int radiusY; !
 // assume existing radius is for X dimension.!
}

Circle and ellipse problem

•  Different solution: make Ellipse a subclass of Circle.
–  "An Ellipse is a Circle with an extra radius field."

•  Just as many problems here:

•  What does it mean when an Ellipse calls Circle's setRadius or
getRadius method (which radius?)

One solution: Immutability

•  Let Circle inherit from Ellipse and eliminate mutator methods.
public class Ellipse { !
 private int radiusX, int radiusY; !
 public int getRadiusX() { return radiusX; }!
 public int getRadiusY() { return radiusY; }!
}!
public class Circle extends Ellipse { … }!
•  Circle still has two radius accessor methods.
•  As long as Circle's constructor forces radiusX = radiusY, there's

no way to violate that constraint later.

Other solutions

•  Let Circle and Ellipse inherit from some common superclass.
•  Let setRadiusX() return success or failure.
•  Drop inheritance entirely.
•  Drop Circle; let users (manually) handle circles as instances of

Ellipse.

What inheritance really is for

•  Inheritance gets you into trouble when it seems like the
relationship is "is-a," but it actually is "is-a-restricted-version-of."
–  Circle and Ellipse
–  Person and Prisoner

•  Certainly a Prisoner is a Person.
•  But Person can have a method walk(int distance)
•  Prisoner's can't do that!

•  Inheritance should be used to add extra detail to a superclass
(e.g., a Monkey is an Animal), not to restrict functionality.
–  ColorPoint is (probably) fine to inherit from Point

Try this one out

•  I want to declare a class ThreeDPoint.
•  Should this inherit from Point?

–  What are the pros and cons?

Method overriding

•  In OOP, a subclass may override a method from a superclass.
•  Just re-define the method in the subclass.

•  In C++, what does this do?
class Base { !
 public: int f() { return 1; } };!
class Derived: public Base {!
 public: int f() { return 2; } };!
!
int main() { !
 Base b;!
 Derived d;!
 cout << b.f() << endl;!
 cout << d.f() << endl;!
 b = d;!
 cout << b.f() << endl;!
 Base *b2 = &d;!
 cout << b2->f() << endl;!
}!

Base *b2 = &d;  
 cout << b2->f() << endl;!

•  With a pointer to an object, a call to a method of that object calls
the version of the method specified by the type of the pointer,
not the type of the object being pointed to.

•  Can be changed with the C++ keyword virtual.

•  With a pointer to an object, a call to a virtual method of that
object calls the version of the method specified by the type of
the object being pointed to.

•  In C++, what does this do?
class Base { !
 public: virtual int f() { return 1; } };!
class Derived: public Base {!
 public: int f() { return 2; } };!
!
int main() { !
 Base b;!
 Derived d;!
 cout << b.f() << endl;!
 cout << d.f() << endl;!
 b = d;!
 cout << b.f() << endl;!
 Base *b2 = &d;!
 cout << b2->f() << endl;!
}!

Java virtual methods

•  In Java, all methods are virtual.
–  This behavior cannot be changed.
–  If a subclass needs to call a superclass's version of an

overridden method from a subclass, there is the super
keyword:

public class Base { !
 public int f() { return 1; } }!
public class Derived extends Base {!
 public int f() { return 2 + super.f(); } }!
!

Java virtual methods

public class ThreeDPoint extends Point!
{!
 private int z;!
!
 // override distFromOrigin in Point!
 public double distFromOrigin() {!
 return Math.sqrt(!
 getX()*getX() + getY()*getY() + z*z;!
 }!
}!

So far…

•  With examples so far, objects are not so different from closures
–  Multiple methods rather than just "call me"
–  Explicit instance variables rather than whatever is environment

where function is defined
–  Inheritance avoids helper functions or code copying
–  "Simple" overriding just replaces methods

•  But there is a big difference (that you learned in Java):

Overriding can make a method define in the superclass
 call a method in the subclass

–  The essential difference of OOP, studied carefully next lecture

Java I/O

•  Main way of outputting to the screen:

•  System.out.println(x);!
–  takes one argument of any type
–  if x is an object, its toString() method will be

automatically called to convert it to a String.
–  also System.err.println(x);

–  System.out is an OutputStream object (similar to cout in C+

+)

Java I/O

•  There are about 50 bazillion ways to do input in Java.
•  Easiest way:

–  import java.util.*;!
–  Scanner scanner = new Scanner(System.in)!

•  System.in is an InputStream object (similar to cin in C++)
–  Now call any of the following:
–  scanner.nextInt() [or nextLong(), nextFloat(), etc]

•  all of these stop at the first whitespace found
–  scanner.nextLine()!

•  reads a whole line, returns a String

Try this

•  Make a program that reads in integers from the keyboard until
you enter -1.

Collections

•  Java has many collection classes.
–  ArrayList, HashSet, HashMap most common.
–  Very few cases where you need "real" arrays; using

ArrayList is much more common.

•  Syntax is similar to C++ templates
–  e.g., C++'s vector, set, and map

•  Gotcha: Only objects can be stored in Java's collection classes.
–  No ints, floats, booleans, doubles, etc in ArrayLists!
–  Java has "wrapper" classes Integer, Float, Boolean, Double

that you use instead, and Java does the conversion for you.

ArrayList (example for ints)

•  Creation
–  ArrayList<Integer> list = new ArrayList<Integer>();!

•  Put stuff in
–  list.add(x); // adds x to end by default!
–  list.add(i, x); // inserts x at list[i]!
–  list.set(i, x); // changes list[i] to x!

•  Get stuff out
–  list.get(i); // returns list[i]!

•  Other stuff
–  list.size(), list.contains(x),  
list.indexOf(x), list.remove(i), !

Enhanced for loop

for (int i = 0; i < list.size(); i++) {!
 System.out.println(list.get(i));!
}!
!
for (int x : list) {!
 System.out.println(x);!
}!

Try this

•  Make a program that reads in integers from the keyboard until
you enter -1.

•  Add all the integers (as they're entered) to an ArrayList.
•  Print out all the integers. Try this two ways:

–  System.out.println(list);
–  With the enhanced for loop.

Try this

•  Make a program that reads in integers from the keyboard until
you enter -1.

•  Add a static method fib(n) that computes the n'th Fibonacci
number. Write this the standard (slow, recursive) way.

•  Print out the Fibonacci value of each number as they're entered.
–  What is the max Fibonacci # you can compute before you

get an error?

HashMaps

•  Java's has a few hashtable classes.
•  Most common is HashMap.

•  The Java language was constructed with hashtables in mind.
•  The Object class has a hashCode() method.

–  Because all objects inherit (directly or indirectly) from Object,
all classes have a hashCode() method!

•  If you ever make a class that you want to use as the key of a
hashtable, you should override the hashCode() and equals()
methods.
–  Don't worry about this at the moment.

HashMap (example for String map to int)

•  Creation
–  HashMap<String, Integer> map = new
HashMap<String, Integer>();!

•  Put stuff in
–  map.put(s, i); // associates key s with value i!

•  Get stuff out
–  map.get(s); // returns whatever value s is
associated with!

•  Other stuff
–  map.size(), map.containsKey(s),  
map.keySet(), map.remove(s)!

Enhanced for loop

You can use the enhanced for loop to iterate through a map:
!
for (String key : map.keySet()) {!
 int value = map.get(key);!
 // do something with key and/or value!
}!

Try this: memoized Fibonacci in Java

•  Add a HashMap<Integer, Integer> as a static field to your class.
–  This will store the cached Fibonacci values.

•  Alter your Fibonacci method so it does the following:
–  For fib(n):
–  if n = 0 or n = 1, return n
–  Check if n is a key in the hashtable.

•  If it is, get the corresponding value and return it.
•  If it's not, then

–  compute v = fib(n-1) + fib(n-2)
–  put the mapping from n to v in the hashtable
–  return v

HashSets

•  A Set (ADT) is an unordered collection of items.
–  A List is an ordered collection of items.

•  Java has a HashSet class that implements this ADT.
•  Similar to C++'s std::set class.

HashSet (example for ints)

•  Creation
–  HashSet<Integer> set = new HashSet<Integer>();!

•  Put stuff in
–  set.add(x); // adds x to the set!

•  Test if something is in the set
–  set.contains(x); // returns list[i]!

•  Remove something from the set
–  set.remove(x);!

•  Other stuff
–  set.size(), set.isEmpty(), set.clear()!

And now for something completely
different:

Multiple inheritance,
Java interfaces,
and abstract base classes.

More than one superclass?

•  What if we want a class that has more than one superclass?

•  ColorPoint3D could inherit from Point3D and ColorPoint.
•  StudentAthlete inherits from Student and Athlete.

•  Single inheritance can force you to use non-OOP technique to

write these classes
–  (copying code or using "helper" methods)

Trees, dags, and diamonds

•  Note: The phrases subclass, superclass can be ambiguous
–  There are immediate subclasses, superclasses
–  And there are transitive subclasses, superclasses

•  Single inheritance: the class hierarchy is a tree
–  Nodes are classes
–  Parent is immediate superclass
–  Any number of children allowed

•  Multiple inheritance: the class hierarchy no longer a tree
–  Cycles still disallowed (a directed-acyclic graph)
–  If multiple paths show that X is a (transitive) superclass

of Y, then we have diamonds

A

B C D

E

X

Y

V W
Z

What could go wrong? (C++)

•  If V and Z both define a method m,
 what does Y inherit? What does super mean?

–  Directed resends useful (e.g., Z.super)

•  What if X defines a method m that Z but not V overrides?
–  Can handle like previous case, but sometimes undesirable

(e.g., ColorPt3D wants Pt3D's overrides to "win")

•  If X defines fields, should Y have one copy of them (f) or two
(V.f and Z.f)?
–  Turns out each behavior is sometimes desirable (next slides)
–  So C++ has (at least) two forms of inheritance

X

Y

V W
Z

3DColorPoints
If Java had multiple inheritance, we would want ColorPt3D to
"combine" the x and y fields into one copy of each.

public class Point { private int x, y; }

public class ColorPoint extends Point {
 private Color color;
}

public class Point3D extends Point {
 private int z;
}

public class ColorPoint3D extends Point, Point3D
 // not valid Java code!

Artistic cowboys (or cowboy-ish artists?)
This code has Person define a pocket for subclasses to use, but
an ArtistCowboy wants two pockets, one for each draw method

public class Person { private Pocket pocket; }

public class Artist extends Person {
 // stores a brush in their pocket
 public void draw() { /* draw a picture */ }
}
public class Cowboy extends Person {
 // stores a gun in their pocket
 public void draw() { /* draw their gun */ }
}
public class ArtistCowboy extends Artist, Cowboy {
 // do I have one pocket, or two?
 public void draw() { /* what should I do? */ }

Java interfaces

•  C++ has multiple inheritance (can solve the diamond problem
either way you want).

•  Java does not have multiple inheritance.

•  Java has something similar to a classes called interfaces.

Java interfaces
Interfaces have no fields, only methods.
All the methods lack bodies.

public interface Shape {
 public double calculatePerimeter();
 public double calculateArea();
}
public class Ellipse implements Shape {
 private double radiusx, radiusy;
 public double calculatePerimeter() { … }
 public double calculateArea() { … }
}
public class Rectangle implements Shape {
 private double length, width;
 public double calculatePerimeter() { … }
 public double calculateArea() { … }
}

What is an interface?

•  New classes extend an existing class, but implement interfaces.
•  Both classes and interfaces are types!

–  Any class that implements it is a subtype of it
–  So Ellipse and Rectangle are both Objects and Shapes.

public interface Shape {
 public double calculatePerimeter();
 public double calculateArea();
}

public interface Shape {
 public double calculatePerimeter();
 public double calculateArea();
}
public class Ellipse implements Shape {
 private radiusx, radiusy;
 public double calculatePerimeter() { … }
 public double calculateArea() { … }
}
public class Rectangle implements Shape {
 private double length, width;
 public double calculatePerimeter() { … }
 public double calculateArea() { … }
}
Ellipse ell = new Ellipse();
Rectangle rect = new Rectangle();
ell instanceof Shape // true
rect instanceof Shape // true
ell instanceof Object // true
rect instanceof Object // true

public interface Shape {
 public double calculatePerimeter();
 public double calculateArea();
}
public class Ellipse implements Shape {
 private radiusx, radiusy;
 public double calculatePerimeter() { … }
 public double calculateArea() { … }
}
public class Rectangle implements Shape {
 private double length, width;
 public double calculatePerimeter() { … }
 public double calculateArea() { … }
}
Shape s1 = new Ellipse();
Shape s2 = new Rectangle();
s1 instanceof Shape // true
s2 instanceof Shape // true
s1 instanceof Object // true
s2 instanceof Object // true

Ellipse ell = new Ellipse();
Rectangle rect = new Rectangle();
Shape s1 = ell, s2 = rect;

/* All variables that hold objects are references (similar to pointers), so the
third line above does not create new objects. */

double area1 = s1.calculateArea();
 // calls Ellipse's calculateArea

double area2 = s2.calculateArea();
 // calls Rectangle's calculateArea

/* All methods in Java are virtual, so whenever you call a method, the
"correct" one is always called. */

Multiple interfaces

•  Java classes can implement any number of interfaces

•  Because interfaces provide no methods or fields, no questions of
method/field duplication arise
–  No problem if two interfaces both require of implementers and

promise to clients the same method

Summary so far

•  Superclass must have fields and/or method bodies.
–  Define it as a class.

•  Superclass doesn't need fields or method bodies.
–  Define it as an interface.

•  What if superclass must have fields and methods,

–  but you don't know how to implement some methods in the
superclass?

public class Shape {!
 private Color color;!
 public Color getColor() { return color; }!
 public double calculatePerimeter() { ??? }!
 public double calculateArea() { ??? }!
}!
public class Ellipse extends Shape {!
 private double radiusx, radiusy;
 public double calculatePerimeter() { /*fine*/ }
 public double calculateArea() { /*fine*/ }
}
public class Rectangle extends Shape {!
 private double length, width;
 public double calculatePerimeter() { /*fine*/ }
 public double calculateArea() { /*fine*/ }
}

public abstract class Shape {!
 private Color color;!
 public Color getColor() { return color; }!
 public abstract double calculatePerimeter();!
 public abstract double calculateArea();!
}!
public class Ellipse extends Shape {!
 private double radiusx, radiusy;
 public double calculatePerimeter() { /*fine*/ }
 public double calculateArea() { /*fine*/ }
}
public class Rectangle extends Shape {!
 private double length, width;
 public double calculatePerimeter() { /*fine*/ }
 public double calculateArea() { /*fine*/ }
}

Abstract classes

•  Abstract classes can never be directly instantiated:
public abstract class X { … }!
// later on!
X = new X(); // nope!!
•  Can't directly instantiate interfaces either.

–  Only things that can be instantiated (new'ed) are fully-
implemented classes.

•  Abstract classes are a compromise between a class where all
the methods are fully implemented and an interface (where
none of the methods are implemented).

Examples from the Java libraries

•  Comparable (and sorting)
•  Number
•  Collections (List, Set, Map)
•  Iterable

for (Type i : something that implements Iterable) {!
 // do stuff with i here !
}!

