Today's plan

* Introduce OOP concepts from the ground up using Java
» Lots of things will be familiar from C++
« Some things will be different

public class Point

{

private int x, y;

public

this.

}
public
public

public
public

public

Point (int x, int y) {
x = x; this.y = y;

int getX() { return x; }
int getY¥() { return y; }

void setX(int x) { this.x =
void setY¥(int y) { this.y

double distFromOrigin() {

"
we o

I
<

return Math.sqrt(x * x + y * y)

Subclassing

« A class definition has a superclass (Object if not specified)

class ColorPoint extends Point { .. }

» The superclass affects the class definition:
— Class inherits all field declarations from superclass
— Class inherits all private method definitions from superclass

» Code within the subclass cannot directly access any
private fields or methods.

— But class can override method definitions as desired

public class ColorPoint extends Point

{

private Color color;

public ColorPoint(int x, int y, Color c) {
super(x, y); // call the superclass constructor
this.color = c;

}

public Color getColor() { return color; }
public void setColor(Color c¢) { this.color = c; }

An object has a class

Point p = new Point (0, O0);
ColorPoint cp = new ColorPoint (0, 0, Color.red)

/* instanceof is a keyword that returns true
if a variable is an instance of a class. */

p instanceof Point // true
cp instanceof ColorPoint // true
cp instanceof Point // true

« Using instanceof can indicate bad OO style.

— If you're using it to do something different for different objects types,
you probably meant to write a method and have subclasses override
the method.

» instanceof is an example of using reflection

— Reflection is the ability for a computer program to be able to examine
its structure and behavior at run-time.

Why subclass?

* Instead of creating ColorPoint, could add methods to Point
— That could mess up other users and subclassers of Point

public class Point {
private int x, y;
private Color color;

public Point(x, y) {
// what does color get set to?

}
}

Why subclass?

» |Instead of subclassing Point, could copy/paste the methods

— Means the same thing if you don't use instanceof, but of
course code reuse is nice

public class ColorPoint ({
private int x, y;
private Color color;

}

ColorPoint cp = new ColorPoint(whatevs)
if (cp instanceof Point) ({

// do pointy things
}

Why subclass?

» |Instead of subclassing Point, could use a Point instance variable
inside of ColorPoint.

— Define methods to send same message to the Point
— This is called object composition; expresses a "has a"
relationship.

— But for ColorPoint, subclassing makes sense: less work and
can use a ColorPoint wherever code expects a Point

public class ColorPoint ({
private Point point;
private Color color;
public setX(int x) { point.setX(x), }

Is-a vs has-a

« OO beginners tend to overuse inheritance (the is-a relationship).

« OO inheritance is notoriously tricky to get right sometimes (e.g.,
writing methods that test for equality)

— boolean equals(Point a, Point b)
— What if a & b can be Points or ColorPoints?

* Many real-world relationships can be expressed using is-a or
has-a, even if the most natural way seems to be is-a.

— ColorPoint could be written using object composition.

Circle and ellipse problem

« What should the relationship be between a Circle class and an
Ellipse class?

Circle and ellipse problem

» Circles are specific types of ellipses, so a Circle is-a Ellipse.
public class Ellipse {
private int radiusX, int radiusY;
public void setRadiusX(int rx) { radiusX = rx;
public void setRadiusX(int rx) { radiusY = ry;
public int getRadiusX() { return radiusX; }
public int getRadiusY()
}

public class Circle extends Ellipse {

{ return radiusY; }

Circle and ellipse problem

» Circles are specific types of ellipses, so a Circle is-a Ellipse.
« But now Circle has a setRadiusX() method.

* Furthermore, what would that method's implementation look
like?

Circle and ellipse problem

» Different solution: make Ellipse a subclass of Circle.
— "An Ellipse is a Circle with an extra radius field."
public class Circle {
private int radius;
public void setRadius(int r) { radius = r; }
public int getRadius() { return radius; }

}

public class Ellipse extends Circle {

private int radiusY;
// assume existing radius is for X dimension.

Circle and ellipse problem

» Different solution: make Ellipse a subclass of Circle.
— "An Ellipse is a Circle with an extra radius field."
« Just as many problems here:

 What does it mean when an Ellipse calls Circle's setRadius or
getRadius method (which radius?)

One solution: Immutability

» Let Circle inherit from Ellipse and eliminate mutator methods.

public class Ellipse {
private int radiusX, int radiusY;
public int getRadiusX() { return radiusX; }
public int getRadiusY() { return radiusY; }

}

public class Circle extends Ellipse { .. }

» Circle still has two radius accessor methods.

» As long as Circle's constructor forces radiusX = radiusY, there's
no way to violate that constraint later.

Other solutions

« Let Circle and Ellipse inherit from some common superclass.
» Let setRadiusX() return success or failure.
« Drop inheritance entirely.

« Drop Circle; let users (manually) handle circles as instances of
Ellipse.

What inheritance really is for

* Inheritance gets you into trouble when it seems like the
relationship is "is-a," but it actually is "is-a-restricted-version-of."

— Circle and Ellipse

— Person and Prisoner
» Certainly a Prisoner is a Person.
» But Person can have a method walk(int distance)
* Prisoner's can't do that!

* Inheritance should be used to add extra detalil to a superclass
(e.g., a Monkey is an Animal), not to restrict functionality.

— ColorPoint is (probably) fine to inherit from Point

Try this one out

| want to declare a class ThreeDPoint.
 Should this inherit from Point?
— What are the pros and cons?

Method overriding

* In OOP, a subclass may override a method from a superclass.
« Just re-define the method in the subclass.

 In C++, what does this do?
class Base {
public: int f£() { return 1; } };
class Derived: public Base {
public: int f() { return 2; } };

int main() {
Base b;
Derived d;
cout << b.f() << endl;
cout << d.f() << endl;
b = d;
cout << b.f() << endl;
Base *b2 = &d;
cout << b2->f() << endl;

Base *b2 = &d;

cout << b2->f() << endl;

With a pointer to an object, a call to a method of that object calls
the version of the method specified by the type of the pointer,
not the type of the object being pointed to.

Can be changed with the C++ keyword virtual.

With a pointer to an object, a call to a virtual method of that
object calls the version of the method specified by the type of
the object being pointed to.

 In C++, what does this do?
class Base {

public: virtual int f£() { return 1; } };
class Derived: public Base {

public: int f() { return 2; } };

int main() {
Base b;
Derived d;
cout << b.f() << endl;
cout << d.f() << endl;
b = d;
cout << b.f() << endl;
Base *b2 = &d;
cout << b2->f() << endl;

Java virtual methods

 In Java, all methods are virtual.
— This behavior cannot be changed.

— |If a subclass needs to call a superclass's version of an
overridden method from a subclass, there is the super
keyword:

public class Base {
public int f£() { return 1; } }
public class Derived extends Base {
public int f£() { return 2 + super.f(); } }

Java virtual methods

public class ThreeDPoint extends Point

{

private int z;

// override distFromOrigin in Point
public double distFromOrigin() {

return Math.sqrt(

getX() *getX() + getY()*getY() + z*z;

So far...

« With examples so far, objects are not so different from closures
— Multiple methods rather than just "call me"

— EXxplicit instance variables rather than whatever is environment
where function is defined

— Inheritance avoids helper functions or code copying
— "Simple" overriding just replaces methods

« But there is a big difference (that you learned in Java):

Overriding can make a method define in the superclass
call a method in the subclass

— The essential difference of OOP, studied carefully next lecture

Java /0O

* Main way of outputting to the screen:

e System.out.println(x);
— takes one argument of any type

— if x is an object, its toString () method will be
automatically called to convert it to a String.

— also System.err.println(x);

— System.out is an OutputStream object (similar to cout in C+
+)

Java I/0

* There are about 50 bazillion ways to do input in Java.
« Easiest way:
— import java.util.*;
— Scanner scanner = new Scanner (System.in)
« System.in is an InputStream object (similar to cin in C++)
— Now call any of the following:
— scanner.nextInt () [or nextLong(), nextFloat(), etc]
« all of these stop at the first whitespace found
— scanner.nextLine()
* reads a whole line, returns a String

Try this

 Make a program that reads in integers from the keyboard until
you enter -1.

Collections

« Java has many collection classes.
— ArrayList, HashSet, HashMap most common.

— Very few cases where you need "real" arrays; using
ArrayList is much more common.

« Syntax is similar to C++ templates
— e.g., C++'s vector, set, and map

« Gotcha: Only objects can be stored in Java's collection classes.
— No ints, floats, booleans, doubles, etc in ArrayLists!

— Java has "wrapper" classes Integer, Float, Boolean, Double
that you use instead, and Java does the conversion for you.

ArrayList (example for ints)

Creation

— ArrayList<Integer> list = new ArrayList<Integer>();
Put stuff in

— list.add(x); // adds x to end by default

— list.add(i, x); // inserts x at list[i]

— list.set(i, x); // changes list[i] to x

Get stuff out

— list.get(i); // returns list[i]

Other stuff

— list.size(), list.contains(x),
list.indexO0f(x), list.remove(i),

Enhanced for loop

for (int i = 0; i1 < list.size(); i++) {
System.out.println(list.get(i));
}

for (int x : list) {
System.out.println(x);

Try this

 Make a program that reads in integers from the keyboard until

you enter -1.
« Add all the integers (as they're entered) to an ArrayList.

* Print out all the integers. Try this two ways:

— System.out.printin(list);
— With the enhanced for loop.

Try this

 Make a program that reads in integers from the keyboard until
you enter -1.

« Add a static method fib(n) that computes the n'th Fibonacci
number. Write this the standard (slow, recursive) way.

» Print out the Fibonacci value of each number as they're entered.

— What is the max Fibonacci # you can compute before you
get an error?

HashMaps

e Java's has a few hashtable classes.
 Most common is HashMap.

« The Java language was constructed with hashtables in mind.
 The Object class has a hashCode() method.

— Because all objects inherit (directly or indirectly) from Object,
all classes have a hashCode() method!

» |f you ever make a class that you want to use as the key of a
hashtable, you should override the hashCode() and equals()
methods.

— Don't worry about this at the moment.

HashMap (example for String map to int)

Creation

— HashMap<String, Integer> map = new
HashMap<String, Integer>();

Put stuff in
— map.put(s, i1); // associates key s with value i

Get stuff out

— map.get(s); // returns whatever value s is
associated with

Other stuff

— map.size(), map.containsKey(s),
map.keySet (), map.remove(s)

Enhanced for loop

You can use the enhanced for loop to iterate through a map:

for (String key : map.keySet()) {
int value = map.get(key);
// do something with key and/or value

Try this: memoized Fibonacci in Java

« Add a HashMap<Integer, Integer> as a static field to your class.
— This will store the cached Fibonacci values.
« Alter your Fibonacci method so it does the following:
— For fib(n):
— ifn=0orn=1, return n
— Check if n is a key in the hashtable.
 Ifitis, get the corresponding value and return it.
 Ifit's not, then
— compute v = fib(n-1) + fib(n-2)
— put the mapping from n to v in the hashtable
— return v

HashSets

« A Set (ADT) is an unordered collection of items.
— A List is an ordered collection of items.
« Java has a HashSet class that implements this ADT.

 Similar to C++'s std::set class.

HashSet (example for ints)

Creation

— HashSet<Integer> set = new HashSet<Integer>();
« Put stuff in

— set.add(x); // adds x to the set
« Test if something is in the set
— set.contains(x); // returns list[i]

 Remove something from the set
— set.remove(x);
» Other stuff

— set.size(), set.isEmpty(), set.clear()

And now for something completely
different:

Multiple inheritance,
Java interfaces,

and abstract base classes.

~“AND NOW FOR SOMETHING
" COMPLETELY DIFFERENT

More than one superclass?

What if we want a class that has more than one superclass?

 ColorPoint3D could inherit from Point3D and ColorPoint.
o StudentAthlete inherits from Student and Athlete.

« Single inheritance can force you to use non-OOP technique to
write these classes

— (copying code or using "helper" methods)

Trees, dags, and diamonds

* Note: The phrases subclass, superclass can be ambiguous
— There are immediate subclasses, superclasses
— And there are transitive subclasses, superclasses

A

« Single inheritance: the class hierarchy is a tree /F
— Nodes are classes B D

— Parent is immediate superclass |

— Any number of children allowed E

X

« Multiple inheritance: the class hierarchy no longer a tree /\
— Cycles still disallowed (a directed-acyclic graph)

— If multiple paths show that X is a (transitive) superclass\/Z
of Y, then we have diamonds

What could go wrong? (C++) X __

« If Vand Z both define a method m, \/Z

what does Y inherit? What does super mean? v
— Directed resends useful (e.g., Z . super)

« What if X defines a method m that Z but not V overrides?

— Can handle like previous case, but sometimes undesirable
(e.g., ColorPt3D wants Pt3D's overrides to "win")

« |If X defines fields, should Y have one copy of them (£) or two
(Vv.f and z.£)?

— Turns out each behavior is sometimes desirable (next slides)
— So C++ has (at least) two forms of inheritance

3DColorPoints

If Java had multiple inheritance, we would want ColorPt3D to
"combine" the x and y fields into one copy of each.

public class Point { private int x, y; }

public class ColorPoint extends Point {
private Color color;

}

public class Point3D extends Point ({
private int z;

}

public class ColorPoint3D extends Point, Point3D
// not wvalid Java code!

Artistic cowboys (or cowboy-ish artists?)

This code has Person define a pocket for subclasses to use, but
an ArtistCowboy wants two pockets, one for each draw method

public class Person { private Pocket pocket; }

public class Artist extends Person {
// stores a brush in their pocket
public void draw() { /* draw a picture */ }
}
public class Cowboy extends Person ({
// stores a gun in their pocket
public void draw() { /* draw their gqun */ }
}
public class ArtistCowboy extends Artist, Cowboy {
// do I have one pocket, or two?
public void draw() { /* what should I do? */ }

Java Iinterfaces

« C++ has multiple inheritance (can solve the diamond problem
either way you want).

« Java does not have multiple inheritance.

« Java has something similar to a classes called interfaces.

Java Iinterfaces

Interfaces have no fields, only methods.
All the methods lack bodies.

public interface Shape {
public double calculatePerimeter() ;
public double calculateArea() ;

}

public class Ellipse implements Shape ({
private double radiusx, radiusy;
public double calculatePerimeter() { .. }
public double calculateArea() { .. }

}

public class Rectangle implements Shape ({
private double length, width;
public double calculatePerimeter() { .. }
public double calculateArea() { .. }

}

What is an interface?

public interface Shape {
public double calculatePerimeter() ;
public double calculateArea() ;

}

* New classes extend an existing class, but implement interfaces.
« Both classes and interfaces are types!

— Any class that implements it is a subtype of it

— So Ellipse and Rectangle are both Objects and Shapes.

public interface Shape {
public double calculatePerimeter() ;
public double calculateArea() ;

}

public class Ellipse implements Shape {
private radiusx, radiusy;

public double calculatePerimeter() { .. }
public double calculateArea() { .. }
}

public class Rectangle implements Shape {
private double length, width;
public double calculatePerimeter() { .. }
public double calculateArea() { .. }

}

Ellipse ell = new Ellipse();

Rectangle rect = new Rectangle();

ell instanceof Shape // true
rect instanceof Shape // true
ell instanceof Object // true

rect instanceof Object // true

public interface Shape {

public double calculatePerimeter() ;

public double calculateArea() ;

}

public class Ellipse implements Shape {

private radiusx, radiusy;

public double calculatePerimeter () ({
public double calculateArea() {

}

public class Rectangle implements Shape {

private double length,

public double calculatePerimeter () {
public double calculateArea() {

}
Shape sl = new Ellipse()

width;

.
14

Shape s2 = new Rectangle();

sl instanceof Shape
s2 instanceof Shape
sl instanceof Object
s2 instanceof Object

// true
// true
// true
// true

}

}

}

}

Ellipse ell = new Ellipse();
Rectangle rect = new Rectangle() ;
Shape sl = ell, s2 = rect;

/* All variables that hold objects are references (similar to pointers), so the
third line above does not create new objects. */

double areal = sl.calculateArea() ;
// calls Ellipse's calculateArea

double area2 = s2.calculateArea() ;
// calls Rectangle's calculateArea

/* All methods in Java are virtual, so whenever you call a method, the
"correct” one is always called. */

Multiple interfaces

» Java classes can implement any number of interfaces

» Because interfaces provide no methods or fields, no questions of
method/field duplication arise

— No problem if two interfaces both require of implementers and
promise to clients the same method

Summary so far

» Superclass must have fields and/or method bodies.

— Define it as a class.
« Superclass doesn't need fields or method bodies.

— Define it as an interface.

 What if superclass must have fields and methods,

— but you don't know how to implement some methods in the
superclass?

public class Shape {
private Color color;
public Color getColor() { return color; }
public double calculatePerimeter() { 2?? }
public double calculateArea() { ??? }

}

public class Ellipse extends Shape {
private double radiusx, radiusy;
public double calculatePerimeter() { /*fine*/ }
public double calculateArea() { /*fine*/ }

}

public class Rectangle extends Shape {
private double length, width;
public double calculatePerimeter() { /*fine*/ }
public double calculateArea() { /*fine*/ }

public abstract class Shape {
private Color color;
public Color getColor() { return color; }
public abstract double calculatePerimeter();
public abstract double calculateArea();

}

public class Ellipse extends Shape {
private double radiusx, radiusy;
public double calculatePerimeter () { /*fine*/ }
public double calculateArea() { /*fine*/ }

}

public class Rectangle extends Shape {
private double length, width;
public double calculatePerimeter() { /*fine*/ }
public double calculateArea() { /*fine*/ }

Abstract classes

« Abstract classes can never be directly instantiated:
public abstract class X { .. }

// later on

X = new X(); // nope!

« Can't directly instantiate interfaces either.

— Only things that can be instantiated (new'ed) are fully-
implemented classes.

» Abstract classes are a compromise between a class where all
the methods are fully implemented and an interface (where
none of the methods are implemented).

Examples from the Java libraries

« Comparable (and sorting)
 Number

» Collections (List, Set, Map)
* lterable

for (Type i : something that implements Iterable) {
// do stuff with i here

