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Review 

•  Building up Scheme one construct at a time via precise definitions 
–  Constructs have syntax, type-checking rules, evaluation rules 

•  And reasons they’re in the language 
–  Evaluation converts an expression to a value 

•  So far: 
–  Variable bindings 
–  Several expression forms: addition, conditionals, ! 
–  Several types:  integer, rational, real, boolean 

•  Today:  
–  Brief discussion on aspects of learning a PL 
–  Functions, pairs, and lists 
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Five different things 

1.  Syntax: How do you write language constructs? 

2.  Semantics: What do programs mean? (Evaluation rules) 

3.  Idioms: What are typical patterns for using language features to 
express your computation? 

4.  Libraries: What facilities does the language (or a well-known 
project) provide “standard”? (E.g., file access, data structures) 

5.  Tools: What do language implementations provide to make 
your job easier? (E.g., REPL, debugger, code formatter, !) 

These are 5 separate issues 
–  In practice, all are essential for good programmers 
–  Many people confuse them, but shouldn’t 
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Our Focus 

This course focuses on semantics and idioms 
 
•  Syntax is usually uninteresting 

–  A fact to learn, like “The American Civil War ended in 1865” 
–  People obsess over subjective preferences [yawn] 

•  Libraries and tools crucial, but often learn new ones on the job 
–  We’re learning language semantics and how to use that 

knowledge to do great things 
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Function definitions 

Functions: the most important building block in the whole course 
–  Like Python/C++, have arguments and result 
–  But no classes, this,  return, etc. 

Example function binding: 

Spring 2013 5 Programming Languages 

; Note: correct only if y>=0 
 
(define (pow x y) 
  (if (= y 0) 
      1 
      (* x (pow x (- y 1))))) 

Note: The body includes a (recursive) function call:  (pow x (- y 1)) 



Quick Scheme/Racket review 
Simple values: 34, #f, #t, x, 2/3  
(define v e)   ; evaluates e, becomes the value for variable v. 
(+ e1 e2 e3 …)     ; all math is in prefix form. 
(if test e1 e2)   ; if-else statement: if test evaluates to #t,  
                             ; evaluates and returns e1, else evaluates and  

     ; returns e2. 
One new one: 
(cond (test1 e1)  ; if/else if/else statement: 

"(test2 e2)  ; if test1 evaluates to #t, returns 
"(test3 e3)  ;    whatever e1 evaluates to. 
"…)          ; otherwise, if test2 evaluates to #t, returns 

                                       ;    whatever e2 evaluates to. 
                                       ; continues with other tests—usually last 
                                       ; test is #t, which serves as an "else" 
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Function bindings: 3 questions 

•  Syntax: 
–  (Will generalize in later lecture) 

•  Evaluation: A function is a value! (Don't know how to evaluate it yet.) 
–  Adds f to environment so later expressions can call it 
–  (Function-call semantics will also allow recursion) 

•  Type-checking: 
–  Again, none done at compile-time. 
–  User-defined functions do not allow for any built-in type 

checking. 
•  Similar to Python -- the onus is on the programmer to not 

call any functions with arguments of the wrong type. 
•  Not like C++, where every function you write declares what 

types the arguments must be. 
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(define (f x1 x2 . . . xn) e) 
 



Function Calls 
A new kind of expression! 
 

Syntax:  

Evaluation: 
 

1.  (Under current environment,) evaluate e0 to a function f that 
takes arguments x1 through xn and has e as the body. 

2.  (Under current environment,) evaluate arguments e1 through 
en resulting in values v1 through vn. 

3.  Result is evaluation of e in an environment extended to map 
x1 to v1, !, xn to vn 
"  (“An environment” is actually the environment where the 

function was defined, and includes f for recursion) 
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(e0 e1 e2 . . . en) 
 



Example, extended 
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; only correct for y >= 0 
(define (pow x y) 
 (if (= y 0) 
  1 
  (* x (pow x (- y 1))))) 

 
(define (cube x) 
 (pow x 3)) 
  

(define sixtyfour (cube 4)) 
 
(define fortytwo (+ (pow 2 4) (pow 4 2) (cube 2) 2)) 



Some gotchas 

•  Can’t add extra parentheses like in Python/C++. 
–  (+ 1 2) is fine!   (+ (1 2)) is not fine, and neither is ((+ 1 2)). 
–  Parentheses have a very particular meaning in Scheme; 

they are not just used for changing precedence or grouping. 
•  Using prefix notation for everything pretty much 

eliminates having to use parens for precedence. 
•  No “return” statement. 

–  Functions only have a single expression as the body 
anyway. 

–  Evaluating that statement becomes the return value. 
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Recursion 

•  If you’re not yet comfortable with recursion, you will be soon ! 
–  Will use for most functions taking or returning lists 

•  “Makes sense” because calls to same function solve “simpler” 
problems 

•  Recursion more powerful than loops 
–  We won’t use a single loop in Scheme 
–  Loops often (not always) obscure simple, elegant solutions 
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Pairs and lists 

So far: numbers, booleans (#t and #f), conditionals, variables, 
functions 

–  Now ways to build up data with multiple parts 
–  This is essential 
–  C++ examples: classes with fields, arrays 

 
Rest of lecture: 

–  Pairs and lists 
–  These are our basic data structures that we use to create all 

other data structures. 

Later: Other more general ways to create compound data 
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Pairs  

We need a way to build pairs and a way to access the pieces 
 
Build: 
•  Syntax:  
•  Evaluation: Evaluate e1 to v1 and e2 to v2; result is  

(v1 . v2) 
–  A pair of values is a value. 
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(cons e1 e2) 
 



Pairs 

We need a way to build pairs and a way to access the pieces 
 
Build: 
•  Alternate syntax:  
•  Evaluation: No evaluation! 

–  This is how to make a “literal” pair, where v1 and v2 are not 
evaluated. 

–  Similar to using double quotes to make a string literal in C++. 
–  E.g.: (cons (+ 1 2) (+ 3 4)) makes the pair (3 . 7). 
–  E.g.: ‘(3 . 7) also makes the pair (3 . 7). 
–  E.g.: However, ‘((+ 1 2) . (+ 3 4)) makes the pair ((+ 1 2) . (+ 3 4))  
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'(v1 . v2) 
 



Pairs 

We need a way to build pairs and a way to access the pieces 
 
Access: 
•  Syntax:                      and  

•  Evaluation: Evaluate e to a pair of values and return first or 
second piece 
–  Example: If e is a variable x, then look up x in environment 
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(car e) (cdr e) 



Examples 

Functions can take and return pairs 
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(define (swap pair) 
 (cons (cdr pair) (car pair))) 

 
(define (sum-two-pairs p1 p2) 
 (+ (car p1) (cdr p1) (car p1) (cdr p2))) 

 
(define (div-mod n1 n2) 
 (cons (quotient n1 n2) (remainder n1 n2))) 
 ; returning more than one value is a pain in C++ 



Lists 

•  No triples or longer “tuples.”  (where the # of elements is fixed) 

•  However, we do have lists that can hold any number of 
elements. 

Need ways to build lists and access the pieces! 
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Building Lists 

•  The empty list is a value: 

•  In general, a list of values is a value; elements separated by 
spaces:  

•  If e1 evaluates to v and e2 evaluates to a list (v1 … vn), 
then (cons e1 e2) evaluates to (v v1 … vn) 
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'() 

'(v1 v2 ...vn) 



Accessing Lists 
•  (null? e) evaluates to #t if and only if e evaluates to '(). 

•  If e evaluates to '(v1 v2 … vn) then (car e) evaluates to 
v1 
–  (raise exception if e evaluates to '())  

•  If e evaluates to (v1 v2 … vn) then (cdr e) evaluates to 
(v2 … vn) 
–  (raise exception if e evaluates to '())  
–  Notice result is a list 
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Example list functions 
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(define (sum-list lst) 
 (if (null? lst) 
  0 
  (+ (car lst) (sum-list (cdr lst))))) 
   

 
(define (countdown num) 
 (if (= num 0) 
  '() 
  (cons num (countdown (- num 1))))) 
   



Recursion again 

Functions over lists are usually recursive 
–  Only way to “get to all the elements” 

•  What should the answer be for the empty list? 
–  Usually, this is your base case. 

•  What should the answer be for a non-empty list? 
–  Typically in terms of the answer for the cdr of the list! 

Similarly, functions that produce lists of potentially any size will be 
recursive 

–  You create a list is out of smaller lists. 
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Two other ways to build lists 

•  List function 
–  Makes a list out of all arguments. 
–  Arguments can be of any data type. 
–  (list e1 e2 … en) evaluates e1 through en to values 
v1 through vn; returns the list '(v1 v2 … vn). 

•  Append function 
–  Concatenates values inside lists given as arguments. 
–  Arguments must be lists. 
–  (append e1 e2 … en) evaluates e1 through en to 

values v1 through vn; 
–  If v1 = (v11 v12 … ) and v2 = (v21 v22 … ) etc, then 

return value is (v11 v12 … v21 v22 … v31 v32 …). 
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Lists of pairs 
Processing lists of pairs requires no new features.  Examples: 
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(define (sum-pair-list lst)"
"(if (null? lst)"
" 0"
" (+ (car (car lst)) (cdr (car lst)) (sum-pair-list (cdr lst)))))"
""

(define (firsts lst)"
"(if (null? lst)"
" "'()"
" "(cons (car (car lst)) (firsts (cdr lst)))))"
" ""

(define (seconds lst)"
"(if (null? lst)"
" "'()"
" "(cons (cdr (car lst)) (seconds (cdr lst)))))"
" ""

(define (sum-pair-list2 lst)"
"(+ (sum-list (firsts lst)) (sum-list (seconds lst))))"

"
"


