
Programming Languages

Lecture 2
Functions, Pairs, Lists

Adapted from Dan Grossman’s
PL class, Univ. of Washington

Review

•  Building up Scheme one construct at a time via precise definitions
–  Constructs have syntax, type-checking rules, evaluation rules

•  And reasons they’re in the language
–  Evaluation converts an expression to a value

•  So far:
–  Variable bindings
–  Several expression forms: addition, conditionals, !
–  Several types: integer, rational, real, boolean

•  Today:
–  Brief discussion on aspects of learning a PL
–  Functions, pairs, and lists

Spring 2013 2 Programming Languages

Five different things

1.  Syntax: How do you write language constructs?

2.  Semantics: What do programs mean? (Evaluation rules)

3.  Idioms: What are typical patterns for using language features to
express your computation?

4.  Libraries: What facilities does the language (or a well-known
project) provide “standard”? (E.g., file access, data structures)

5.  Tools: What do language implementations provide to make
your job easier? (E.g., REPL, debugger, code formatter, !)

These are 5 separate issues
–  In practice, all are essential for good programmers
–  Many people confuse them, but shouldn’t

Spring 2013 3 Programming Languages

Our Focus

This course focuses on semantics and idioms

•  Syntax is usually uninteresting

–  A fact to learn, like “The American Civil War ended in 1865”
–  People obsess over subjective preferences [yawn]

•  Libraries and tools crucial, but often learn new ones on the job
–  We’re learning language semantics and how to use that

knowledge to do great things

Spring 2013 4 Programming Languages

Function definitions

Functions: the most important building block in the whole course
–  Like Python/C++, have arguments and result
–  But no classes, this, return, etc.

Example function binding:

Spring 2013 5 Programming Languages

; Note: correct only if y>=0

(define (pow x y)
 (if (= y 0)
 1
 (* x (pow x (- y 1)))))

Note: The body includes a (recursive) function call: (pow x (- y 1))

Quick Scheme/Racket review
Simple values: 34, #f, #t, x, 2/3  
(define v e) ; evaluates e, becomes the value for variable v.
(+ e1 e2 e3 …) ; all math is in prefix form.
(if test e1 e2) ; if-else statement: if test evaluates to #t,
 ; evaluates and returns e1, else evaluates and

 ; returns e2.
One new one:
(cond (test1 e1) ; if/else if/else statement:

"(test2 e2) ; if test1 evaluates to #t, returns
"(test3 e3) ; whatever e1 evaluates to.
"…) ; otherwise, if test2 evaluates to #t, returns

 ; whatever e2 evaluates to.
 ; continues with other tests—usually last
 ; test is #t, which serves as an "else"

Spring 2013 6 Programming Languages

Function bindings: 3 questions

•  Syntax:
–  (Will generalize in later lecture)

•  Evaluation: A function is a value! (Don't know how to evaluate it yet.)
–  Adds f to environment so later expressions can call it
–  (Function-call semantics will also allow recursion)

•  Type-checking:
–  Again, none done at compile-time.
–  User-defined functions do not allow for any built-in type

checking.
•  Similar to Python -- the onus is on the programmer to not

call any functions with arguments of the wrong type.
•  Not like C++, where every function you write declares what

types the arguments must be.

Spring 2013 7 Programming Languages

(define (f x1 x2 . . . xn) e)

Function Calls
A new kind of expression!

Syntax:

Evaluation:

1.  (Under current environment,) evaluate e0 to a function f that
takes arguments x1 through xn and has e as the body.

2.  (Under current environment,) evaluate arguments e1 through
en resulting in values v1 through vn.

3.  Result is evaluation of e in an environment extended to map
x1 to v1, !, xn to vn
"  (“An environment” is actually the environment where the

function was defined, and includes f for recursion)

Spring 2013 9 Programming Languages

(e0 e1 e2 . . . en)

Example, extended

Spring 2013 11 Programming Languages

; only correct for y >= 0
(define (pow x y)
 (if (= y 0)
 1
 (* x (pow x (- y 1)))))

(define (cube x)
 (pow x 3))

(define sixtyfour (cube 4))

(define fortytwo (+ (pow 2 4) (pow 4 2) (cube 2) 2))

Some gotchas

•  Can’t add extra parentheses like in Python/C++.
–  (+ 1 2) is fine! (+ (1 2)) is not fine, and neither is ((+ 1 2)).
–  Parentheses have a very particular meaning in Scheme;

they are not just used for changing precedence or grouping.
•  Using prefix notation for everything pretty much

eliminates having to use parens for precedence.
•  No “return” statement.

–  Functions only have a single expression as the body
anyway.

–  Evaluating that statement becomes the return value.

Spring 2013 12 Programming Languages

Recursion

•  If you’re not yet comfortable with recursion, you will be soon !
–  Will use for most functions taking or returning lists

•  “Makes sense” because calls to same function solve “simpler”
problems

•  Recursion more powerful than loops
–  We won’t use a single loop in Scheme
–  Loops often (not always) obscure simple, elegant solutions

Spring 2013 13 Programming Languages

Pairs and lists

So far: numbers, booleans (#t and #f), conditionals, variables,
functions

–  Now ways to build up data with multiple parts
–  This is essential
–  C++ examples: classes with fields, arrays

Rest of lecture:

–  Pairs and lists
–  These are our basic data structures that we use to create all

other data structures.

Later: Other more general ways to create compound data

Spring 2013 14 Programming Languages

Pairs

We need a way to build pairs and a way to access the pieces

Build:
•  Syntax:
•  Evaluation: Evaluate e1 to v1 and e2 to v2; result is

(v1 . v2)
–  A pair of values is a value.

Spring 2013 15 Programming Languages

(cons e1 e2)

Pairs

We need a way to build pairs and a way to access the pieces

Build:
•  Alternate syntax:
•  Evaluation: No evaluation!

–  This is how to make a “literal” pair, where v1 and v2 are not
evaluated.

–  Similar to using double quotes to make a string literal in C++.
–  E.g.: (cons (+ 1 2) (+ 3 4)) makes the pair (3 . 7).
–  E.g.: ‘(3 . 7) also makes the pair (3 . 7).
–  E.g.: However, ‘((+ 1 2) . (+ 3 4)) makes the pair ((+ 1 2) . (+ 3 4))

Spring 2013 16 Programming Languages

'(v1 . v2)

Pairs

We need a way to build pairs and a way to access the pieces

Access:
•  Syntax: and

•  Evaluation: Evaluate e to a pair of values and return first or
second piece
–  Example: If e is a variable x, then look up x in environment

Spring 2013 17 Programming Languages

(car e) (cdr e)

Examples

Functions can take and return pairs

Spring 2013 18 Programming Languages

(define (swap pair)
 (cons (cdr pair) (car pair)))

(define (sum-two-pairs p1 p2)
 (+ (car p1) (cdr p1) (car p1) (cdr p2)))

(define (div-mod n1 n2)
 (cons (quotient n1 n2) (remainder n1 n2)))
 ; returning more than one value is a pain in C++

Lists

•  No triples or longer “tuples.” (where the # of elements is fixed)

•  However, we do have lists that can hold any number of
elements.

Need ways to build lists and access the pieces!

Spring 2013 21 Programming Languages

Building Lists

•  The empty list is a value:

•  In general, a list of values is a value; elements separated by
spaces:

•  If e1 evaluates to v and e2 evaluates to a list (v1 … vn),
then (cons e1 e2) evaluates to (v v1 … vn)

Spring 2013 22 Programming Languages

'()

'(v1 v2 ...vn)

Accessing Lists
•  (null? e) evaluates to #t if and only if e evaluates to '().

•  If e evaluates to '(v1 v2 … vn) then (car e) evaluates to
v1
–  (raise exception if e evaluates to '())

•  If e evaluates to (v1 v2 … vn) then (cdr e) evaluates to
(v2 … vn)
–  (raise exception if e evaluates to '())
–  Notice result is a list

Spring 2013 23 Programming Languages

Example list functions

Spring 2013 25 Programming Languages

(define (sum-list lst)
 (if (null? lst)
 0
 (+ (car lst) (sum-list (cdr lst)))))

(define (countdown num)
 (if (= num 0)
 '()
 (cons num (countdown (- num 1)))))

Recursion again

Functions over lists are usually recursive
–  Only way to “get to all the elements”

•  What should the answer be for the empty list?
–  Usually, this is your base case.

•  What should the answer be for a non-empty list?
–  Typically in terms of the answer for the cdr of the list!

Similarly, functions that produce lists of potentially any size will be
recursive

–  You create a list is out of smaller lists.

Spring 2013 26 Programming Languages

Two other ways to build lists

•  List function
–  Makes a list out of all arguments.
–  Arguments can be of any data type.
–  (list e1 e2 … en) evaluates e1 through en to values
v1 through vn; returns the list '(v1 v2 … vn).

•  Append function
–  Concatenates values inside lists given as arguments.
–  Arguments must be lists.
–  (append e1 e2 … en) evaluates e1 through en to

values v1 through vn;
–  If v1 = (v11 v12 …) and v2 = (v21 v22 …) etc, then

return value is (v11 v12 … v21 v22 … v31 v32 …).

Spring 2013 27 Programming Languages

Lists of pairs
Processing lists of pairs requires no new features. Examples:

Spring 2013 28 Programming Languages

(define (sum-pair-list lst)"
"(if (null? lst)"
" 0"
" (+ (car (car lst)) (cdr (car lst)) (sum-pair-list (cdr lst)))))"
""

(define (firsts lst)"
"(if (null? lst)"
" "'()"
" "(cons (car (car lst)) (firsts (cdr lst)))))"
" ""

(define (seconds lst)"
"(if (null? lst)"
" "'()"
" "(cons (cdr (car lst)) (seconds (cdr lst)))))"
" ""

(define (sum-pair-list2 lst)"
"(+ (sum-list (firsts lst)) (sum-list (seconds lst))))"

"
"

