
Programming Languages

Lecture 3
Local bindings and lambda, plus

Benefits of No Mutation

Adapted from Dan Grossman's PL class,
U. of Washington

Review
Huge progress in 2 lectures on the core pieces of Racket (Scheme):
•  Variables and environments

–  (define variable expression)!
•  Functions

–  Build: (define (f x1 x2 …) e)
–  Use: (f e1 … en)

•  Tuples
–  Build: (cons e1 e2) OR '(v1 . v2)
–  Use: (car e), (cdr e)

•  Lists
–  Build: '() (cons e1 e2) OR '(v1 v2 v3 …)

(list e1 e2 …) (append e1 e2 …)
–  Use: (null? e) (car e) (cdr e)

Spring 2013 2 CS360: Programming Languages

Today

•  The big thing we need: local bindings
–  For style and convenience
–  For efficiency (not “just a little faster”)
–  A big but natural idea: nested function bindings

•  Why not having mutation (assignment statements) is a valuable

language feature
–  No need for you to keep track of sharing/aliasing,

which C++ programmers must obsess about
–  What makes global variables "bad" in most languages

(languages that allow mutation)

Spring 2013 3 CS360: Programming Languages

Let-expressions

The construct for introducing local bindings is just an expression,
so we can use it anywhere we can use an expression

•  Syntax:

–  Each vari is any variable name, each ei is any expression,
and e is also any expression.

•  Evaluation: Evaluate each ei, assign each ei to vari (all at
once) in an environment that includes the bindings from the
enclosing environment.

•  Result of whole let-expression is result of evaluating e in the
new environment.

Spring 2013 4 CS360: Programming Languages

 (let ((var1 e1) (var2 e2) …) e)

Silly examples

Spring 2013 5 CS360: Programming Languages

(define (silly1 z)
 (let ((x 5))
 (+ x z)))

; this one won't work!
(define (silly2 z)
 (let ((x 5) (answer (+ x z)))

 answer))

(define (silly2-fixed z)
 (let* ((x 5) (answer (+ x z)))
 answer))

Silly examples

silly4 is poor style but shows let-expressions are expressions
–  Could also use them in function-call arguments, parts of

conditionals, etc.
–  Also notice shadowing

Spring 2013 6 CS360: Programming Languages

(define (silly3 z)
 (let* ((x (if (> z 0) z 4)) (y (+ x 1)))
 (if (> x y) (* 2 x) (* y y))))

(define (silly4)
 (let ((x 1))
 (+
 (let ((x 2)) (+ x 1))
 (let ((y (+ x 2))) (+ y 1)))))

What’s new

•  What’s new is scope: contexts within a program where a
variable has a value.
–  Variables bound using let can be used in the body of the

let-expression.
–  Variables bound using let* can be used in the body of let-

expression and in later bindings in the same let*.
–  Bindings in let/let* shadow bindings of the same variable

name from the enclosing environment(s).

•  Nothing else is new:
–  Can put any binding we want, even function bindings
–  Evaluation rules just like at “top-level” with (define!)

Spring 2013 7 CS360: Programming Languages

Nested functions, part 1

•  Good style to define helper functions inside the functions they
help if they are:
–  Unlikely to be useful elsewhere
–  Likely to be misused if available elsewhere
–  Likely to be changed or removed later

•  A fundamental trade-off in code design: reusing code saves
effort and avoids bugs, but makes the reused code harder to
change later

•  But we need some additional syntax!

Spring 2013 8 CS360: Programming Languages

Nested functions, part 1

•  let and let* don't let you define function bindings using the same variations
that define does:
–  (define var expr) OK
–  (define (func x1 x2…) body-expr) OK
–  (let ((var expr) (var expr)…) expr) OK!

•  Can't do (let (((func x1 x2…) body-expr) …) expr) NO

–  Note that define statements are not expressions, so they don't evaluate
to values.

–  Can't do (let ((func (define … NO

Spring 2013 9 CS360: Programming Languages

Nested functions, part 1

•  We have expressions that evaluate to numbers: 34, (+ 4 5), (abs -9)
•  We have expressions that evaluate to booleans: #t, #f, (> 4 5)
•  Functions are first-class citizens in Racket (and Scheme), so we need

an expression that evaluates to a function!

•  Technically, we already have one: the name of a previously-defined
function:
(define (silly5 n)  
 (let ((my-function abs))  
 (my-function n)))!
–  But that's not particularly useful.

Spring 2013 10 CS360: Programming Languages

 (let ((var1 e1) (var2 e2) …) e)

Lambda expressions

•  Function to create functions: lambda!
•  Syntax:

–  (lambda (x1 x2 …) e)!
•  Evaluation:

–  Creates an anonymous (un-named) function that takes
arguments x1, x2, … and whose body is e.

–  This new function is a value, so (lambda …) is a value.
•  For now, we will immediately bind these anonymous functions to

names with either define or let/let*.
–  (This is not a rule of Racket or Scheme, though.)
–  (It is possible to call an anonymous function even if it has no

name and has not been bound to a variable.) LATER

Spring 2013 11 CS360: Programming Languages

Lambda expressions

•  The define variant for functions is "syntactic sugar" for lambda:

(define (double n)!

!(* 2 n))  
 
 (define double  
 (lambda (n) (* 2 n)))  
 

•  These are 100% equivalent!

Spring 2013 12 CS360: Programming Languages

Using lambda in a let expression

Spring 2013 13 CS360: Programming Languages

•  Define will "handle" recursive anonymous functions:
(define count-up (lambda (from to)!
 (if (= from to) !
 (cons from '())!
 (cons from (count-up (+ 1 from) to)))))  
!

•  But let/let* won't:
 (define (count-up-from-one x)!
 (let ((count-up (lambda (from to)  
 (if (= from to)!
 (cons from '())  
 (cons from (count-up (+ 1 from) to))))))!
 (count-up 1 x))) !

Using lambda in a let expression

Spring 2013 14 CS360: Programming Languages

•  When using let to define a recursive local function, use letrec:
 (define (count-up-from-one x)!
 (letrec ((count-up (lambda (from to)  
 (if (= from to)!
 (cons from '())  
 (cons from (count-up (+ 1 from) to))))))!
 (count-up 1 x)))  
!
•  Or nested defines:

 (define (count-up-from-one x)!
 (define (count-up from to)  
 (if (= from to)!
 (cons from '())  
 (cons from (count-up (+ 1 from) to))))!
 (count-up 1 x)) !

(Inferior) Example

•  This shows how to use a local function binding, but:
–  Will show a better version next
–  count-up might be useful elsewhere

Spring 2013 15 CS360: Programming Languages

(define (count-up-from-one x)!
 (define (count-up from to)  
 (if (= from to)!
 (cons from '())  
 (cons from (count-up (+ 1 from) to))))!
 (count-up 1 x)) !

Nested functions, better
•  Functions can use any binding in the environment where they

are defined:
–  Bindings from “outer” environments

•  Such as parameters to the outer function
–  Earlier bindings in let* (but not let)

•  Usually bad style to have unnecessary parameters
–  Like to in the previous example

Spring 2013 16 CS360: Programming Languages

(define (count-up-from-one-better x)
 (define (count-up from)
 (if (= from x)
 (cons from '())
 (cons from (count-up (+ 1 from)))))
 (count-up 1))

Avoid repeated recursion
Consider this code and the recursive calls it makes

–  Don’t worry about calls to null?, car, and cdr because
they do a small constant amount of work

Spring 2013 17 CS360: Programming Languages

(define (bad-max lst)
 (cond
 ((null? (cdr lst))
 (car lst))
 ((> (car lst) (bad-max (cdr lst)))
 (car lst))
 (#t
 (bad-max (cdr lst)))))

(define x (bad-max '(50 49 48 … 1)))
(define y (bad-max '(1 2 3 … 50)))

Fast vs. unusable

Spring 2013 18 CS360: Programming Languages

(bm '(50…)

((> (car lst) (bad-max (cdr lst)))
 (car lst))
(#t (bad-max (cdr lst)))))

(bm '(49…) (bm '(48…) (bm '(1))

(bm '(1…) (bm '(2…) (bm '(3…) (bm '(50))

…

(bm '(50))

250

times (bm '(2…)

(bm '(3…)

(bm '(3…)

(bm '(3…)

Math never lies

Suppose one bad-max call’s if-then-else logic and calls to car,
cdr, and null? take 10-7 seconds

–  Then (bad-max '(50 49 … 1)) takes 50 x 10-7 seconds
–  And (bad_max '(1 2 … 50)) takes 2.25 x 108 seconds

•  (over 7 years)
• (bad-max '(55 54 … 1)) takes over 2 centuries
•  Buying a faster computer won’t help much !

The key is not to do repeated work that might do repeated work
that might do!

–  Saving recursive results in local bindings is essential!

Spring 2013 19 CS360: Programming Languages

Efficient max

Spring 2013 20 CS360: Programming Languages

(define (good-max lst)
 (cond
 ((null? (cdr lst))
 (car lst))
 (#t
 (let ((max-of-cdr (good-max (cdr lst))))
 (if (> (car lst) max-of-cdr)
 (car lst)
 max-of-cdr)))))

Fast vs. fast

Spring 2013 21 CS360: Programming Languages

(gm '(50…)

(let ((max-of-cdr (good-max (cdr lst))))
 (if (> (car lst) max-of-cdr)
 (car lst)
 max-of-cdr))

(gm '(49…) (gm '(48…) (gm '(1))

(gm '(1…) (gm '(2…) (gm '(3…) (gm '(50))

A valuable non-feature: no mutation

Those are all the features you need (and should use) on hw1

Now learn a very important non-feature

–  Huh?? How could the lack of a feature be important?
–  When it lets you know things other code will not do with your

code and the results your code produces

A major aspect and contribution of functional programming:

Not being able to assign to (a.k.a. mutate) variables or parts of
tuples and lists

Spring 2013 25 CS360: Programming Languages

Suppose we had mutation!

•  What is z?
–  Would depend on how we implemented sort-pair

•  Would have to decide carefully and document sort-pair
–  But without mutation, we can implement “either way”

•  No code can ever distinguish aliasing vs. identical copies
•  No need to think about aliasing: focus on other things
•  Can use aliasing, which saves space, without danger

Spring 2013 26 CS360: Programming Languages

(define x '(4 . 3))
(define y (sort-pair x))

somehow mutate (car x) to hold 5

(define z (car y))

Interface vs. implementation
In Racket, these two implementations of sort-pair are indistinguishable

–  But only because tuples are immutable
–  The first is better style: simpler and avoids making a new pair in the

then-branch

Spring 2013 27 CS360: Programming Languages

(define (sort-pair pair)
 (if (> (car pair) (cdr pair))
 pair
 (cons (cdr pair) (car pair))))

(define (sort-pair pair)
 (if (> (car pair) (cdr pair))
 (cons (car pair) (cdr pair))
 (cons (cdr pair) (car pair))))

An even better example

Spring 2013 28 CS360: Programming Languages

(define (my-append lst1 lst2)
 (if (null? lst1)
 lst2
 (cons (car lst1) (append (cdr lst1) lst2))))

(define x '(2 4))
(define y '(5 3 0))
(define z (append x y))

x

y

z

2 4

5 3 0

2 4

x

y

z

2 4

5 3 0

2 4 5 3 0

or

(can’t tell,
but it’s the
first one)

Racket vs. C++ on mutable data

•  In Racket, we create aliases all the time without thinking about it
because it is impossible to tell where there is aliasing
–  Example: cdr is constant time; does not copy rest of the list
–  So don’t worry and focus on your algorithm

•  In C++, we have to think about the implications of mutability,
which often forces us to copy manually.
–  Hence why we have pass by reference and pass by value
–  And then you have pass by const reference to simulate pass

by value but not waste time copying!
•  e.g., compare(const string& s1, const string& s2)

Spring 2013 29 CS360: Programming Languages

