
Programming Languages

Lecture 4
Benefits of dynamic typing

Not adapted from Dan Grossman's PL class,
U. of Washington

Declaring functions in C++ vs Python

C++ uses static typing: most code can be checked at compile-time
to make sure rules involving types are not violated.

int double(int n) {!
 return 2 * n; !
}!

Python uses dynamic typing: most code cannot be checked for
type errors at compile-time; this has be delayed until run-time.

def double(n):!
 return 2 * n!

 Spring 2013 2 CS360: Programming Languages

Dynamic typing

•  Racket (like most Scheme or Lisp dialects) is dynamically typed.
•  Some characteristics of dynamic typing:

–  Values have types, but variables do not.
•  A variable can refer to different types during its lifetime.

–  Most type-error bugs cannot be found before the program is
run, and not until the offending line of code is encountered.

•  Possible to write code with type errors that aren't
discovered for a long time, if buried in code that isn't
executed often.

–  Traditionally (but not always), dynamically-typed languages
are interpreted, whereas statically-typed languages are
compiled.

Spring 2013 3 CS360: Programming Languages

Some good things about dynamic typing

•  Enables polymorphism (enabling code to handle any data type).
–  Example: Calculating the length of a list.
(define (length lst)  
 (if (null? lst) 0 (+ 1 (length (cdr lst)))))  
 
versus

int length_int_array(int_node* array) {  
 if (array->next == NULL) return 0;  
 else return 1 + length_int_array(array->next);  
}!

Spring 2013 4 CS360: Programming Languages

Easier to create flexible data structures

•  In Racket, it's easy to create a list that can contain any other
kind of data structure:
–  List of integers: '(1 2 3)
–  List of booleans: '(#f #f #t #f #t)
–  List of strings: '("a" "b" "c")
–  List of mixed types: '("a" 42 #f)
–  List of really mixed types: '(17 (3 #f) ("hi") -9 (1 (2 (3) 4 ())))

•  Also, all of these lists will work with our length function!

•  Mixing types in a single data structure is not easy in statically-
typed languages.

•  In C++, arrays or vectors must all hold the same type.

Spring 2013 5 CS360: Programming Languages

"Manual" type-checking

•  Dynamically-typed languages often have some way for the
programmer to discover the type of a variable.

•  In Racket (all of these return #t or #f):
–  number?!

• also integer?, rational?, real?!
–  list?!
–  pair?!
–  string?!
–  boolean?!

•  Enables a single function to do different things depending on the
type of an argument.

Spring 2013 6 CS360: Programming Languages

Length of a list vs length of nested lists

•  For "regular" list
–  if empty list, return 0
–  else return 1 + length of the cdr of the list.

•  For a list with possible nested lists!
–  if empty list, return 0
–  if the car of the list is a list! do what?
–  else (car is not a list)! do what?

Spring 2013 7 CS360: Programming Languages

Length of a list vs length of nested lists

•  For "regular" list
–  if empty list, return 0
–  else return 1 + length of the cdr of the list.

•  For a list with possible nested lists!
–  if empty list, return 0
–  if the car of the list is a list

•  return length of the car (which is a list) plus length of cdr
–  else (car is not a list)

•  return 1 + length of the cdr

Spring 2013 8 CS360: Programming Languages

Length of a list vs length of nested lists

(define (length-nested lst)!
 (cond ((null? lst) 0)!
 ((list? (car lst)) !
 (+ (length-nested (car lst)) !
 (length-nested (cdr lst))))!
 (#t (+ 1 (length-nested (cdr lst))))))!

Spring 2013 9 CS360: Programming Languages

Let's do some practice!

•  A "secret" of Racket/Scheme that I haven't told you:
•  Function bodies may contain more than one expression.

–  In "pure" functional programming, this isn't true.
–  But it's nice to have this facility at times.
–  For debugging, can use (display <whatever>) and (newline)

•  Example:
(define (length lst)  
!(display lst)  
"(newline)  
!(if (null? lst) 0 (+ 1 (length (cdr lst)))))!

Spring 2013 10 CS360: Programming Languages

