Programming Languages

 Tail Recursion and Accumulators

 Tail Recursion and Accumulators}

Material adapted from
Dan Grossman's PL class, U. Washington

Recursion

Should now be comfortable with recursion:

- No harder than using a loop (Maybe?)
- Often much easier than a loop
- When processing a tree (e.g., evaluate an arithmetic expression)
- Avoids mutation even for local variables
- Now:
- How to reason about efficiency of recursion
- The importance of tail recursion
- Using an accumulator to achieve tail recursion
- [No new language features here]

Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

- Calling a function f pushes an instance of f on the stack
- When a call to f to finishes, it is popped from the stack

These stack frames store information such as

- the values of arguments and local variables
- information about "what is left to do" in the function (further computations to do with results from other function calls)
Due to recursion, multiple stack-frames may be calls to the same function

Example

(define (fact n)

$$
\left.\left.\left.\left.\left.\begin{array}{rl}
(\text { if } & (=\mathrm{n} 0) \quad 1 \\
& (* \mathrm{n}(\text { fact }(-\mathrm{n} \\
\hline
\end{array}\right)\right)\right)\right)\right)
$$

(fact 0)
(fact 1)
(fact 1) $=>$ (${ }^{*} 1$ _)
(fact 2) (fact 2) $=>$ (*2_) (fact 2) $=>$ (*2_)

(fact 0) $=>1$
(fact 1) $=>$ ($^{*} 1 _$) $($fact 1$)=>\left({ }^{*} 11\right.$)
(fact 2) $=>$ (${ }^{*}$ 2_) (fact 2) $=>$ (${ }^{*}$ 2_) (fact 2) $=>$ (*2 1)
(fact 3) $=>$ (* 3 _) (fact 3) $=>$ (* 3 _) (fact 3) $=>$ (* 3 _) (fact 3) $=>$ (* 3 2)

What's being computed

(fact 3)

$$
\begin{aligned}
& \Rightarrow(* 3(\text { fact } 2)) \\
& =>(* 3(* 2(f a c t 1))) \\
& =>(* 3(* 2(* 1 \quad(\text { fact } 0)))) \\
& \Rightarrow(* 3(* 2(* 11))) \\
& \Rightarrow(* 3(* 21)) \\
& \Rightarrow(* 32) \\
& \Rightarrow 6
\end{aligned}
$$

Example Revised

```
(define (fact2 n)
    (define (fact2-helper n acc)
        (if (= n 0) acc
            (fact2-helper (- n 1) (* acc n))))
    (fact2-helper n 1))
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)

Example Revised

(define (fact2 n) (define (fact2-helper n acc)
(if (= n O) acc
(fact2-helper (-n 1) (* acc n)))) (fact2-helper n 1))

		(f2-h 23)	(f2-h 23) =>
	(f2-h 3 1)	(f2-h 3 1) =>	(f2-h 3 1) =>
(fact2 3)	(fact2 3) =>	(fact2 3) =>	(fact2 3) =>
(f2-h 0 6)	(f2-h 06) $=>6$		
(f2-h 16) =>	(f2-h 16) =>	(f2-h 1 6) $=>6$	
(f2-h 2 3) $=>$	(f2-h 2 3) $=>$	(f2-h 2 3) $=>$	(f2-h 23 3) $=>6$
(f2-h 3 1) =>	(f2-h 31) =>	(f2-h 3 1) =>	(f2-h 3 1) =>
(fact2 3) =>	(fact2 3) $=>$	(fact2 3) =>	(fact2 3) =>

What's being computed

```
(fact2 3)
    => (fact2-helper 3 1)
    => (fact2-helper 2 3)
    => (fact2-helper 1 6)
    => (fact2-helper 0 6)
    => }
```


An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee's result and return it without any further evaluation

Racket recognizes these tail calls in the compiler and treats them differently:

- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop
(Reasonable to assume all functional-language implementations do tail-call optimization)
includes Racket, Scheme, LISP, ML, Haskell, OCaml...

What really happens

```
(define (fact2 n)
```

(define (fact2-helper n acc)
(if (= n 0) acc
(fact2-helper (- n 1) (* acc n))))
(fact2-helper n 1))

(fact 3)	(f2-h 3 1)	(f2-h 2 3)	(f2-h 1 6)	$(\mathrm{f} 2-\mathrm{h} 06)$

Moral

- Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
- Tail-recursive: recursive calls are tail-calls
- meaning all recursive calls must be the last thing the calling function does
- no additional computation with the result of the callee
- There is also a methodology to guide this transformation:
- Create a helper function that takes an accumulator
- Old base case's return value becomes initial accumulator value
- Final accumulator value becomes new base case return value

Final accumulator value becomes new base case return value.

Another example

```
    (define (sum1 lst)
    (if (null? lst) 0
        (+ (car lst) (sum1 (cdr lst)))))
(define (sum2 lst)
(define (sum2-helper lst acc)
        (if (null? lst) acc
        (sum2-helper (cdr lst) (+ (car lst) acc))))
(sum2-helper lst 0))
```


And another

```
(define (rev1 lst)
    (if (null? lst) '()
        (append (rev1 (cdr lst)) (list (car lst)))))
(define (rev2 lst)
(define (rev2-helper lst acc)
    (if (null? lst) acc
        (rev2-helper (cdr lst) (cons (car lst) acc))))
(rev2-helper lst '()))
```


Actually much better

```
(define (rev1 lst) ; Bad version (non T-R)
(if (null? lst) '()
    (append (rev1 (cdr lst)) (list (car lst)))))
```

- For fact and sum, tail-recursion is faster but both ways linear time
- The non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
- And $1+2+\ldots+$ (length-1) is almost length * length / 2
- Moral: beware append, especially if $1^{\text {st }}$ argument is result of a recursive call
- cons is constant-time (and fast), so the accumulator version rocks

```
        Tail-recursion == while loop with local variable
(define (fact2 n)
    (define (fact2-helper n acc)
    (if (= n O) acc
            (fact2-helper (- n 1) (* acc n))))
    (fact2-helper n 1))
def fact2(n):
    acc = 1
    while n != 0:
        acc}=\operatorname{acc}* n 
        n}=\textrm{n}-
    return acc
```

```
Tail-recursion == while loop with local variable
(define (sum2 lst)
    (define (sum2-helper lst acc)
    (if (null? lst) acc
            (sum2-helper (cdr lst) (+ (car lst) acc))))
    (sum2-helper lst 0))
def sum2(lst):
    acc}=
    while lst != []:
        acc = lst[0] + acc
        lst = lst[1:]
    return acc
```

```
Tail-recursion == while loop with local variable
(define (rev2 lst)
    (define (rev2-helper lst acc)
    (if (null? lst) acc
        (rev2-helper (cdr lst) (cons (car lst) acc))))
    (rev2-helper lst '()))
def rev2(lst):
    acc = []
    while lst != []:
        acc = [lst[0]] + acc
        lst = lst[1:]
    return acc
```


Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Example: functions that process trees

- Lists can be used to represent trees: '((1 2) ((3 4) 5))

In these cases, the natural recursive approach is the way to go

- You could get one recursive call to be a tail call, but rarely worth the complication

Precise definition

If the result of ($\mathbf{f} \mathbf{x}$) is the "return value" for the enclosing function body, then ($\mathbf{f} \mathbf{x}$) is a tail call
i.e., don't have to do any more processing of ($f x$) to end function

Can define this notion more precisely...

- A tail call is a function call in tail position
- The single expression (ignoring nested defines) of the body of a function is in tail position.
- If (if test e1 e2) is in tail position, then e1 and e2 are in tail position (but test is not). (Similar for cond-expressions)
- If a let-expression is in tail position, then the single expression of the body of the let is in tail position (but no variable bindings are)
- Arguments to a function call are not in tail position
- ...

Are these functions tail-recursive?

```
(define (get-nth lst n)
    (if (= n O) (car lst)
    (get-nth (cdr lst) (- n 1))))
(define (good-max lst)
    (cond
    ((null? (cdr lst))
        (car lst))
    (#t
    (let ((max-of-cdr (good-max (cdr lst))))
        (if (> (car lst) max-of-cdr)
        (car lst) max-of-cdr)))))
```


Try these...

Write a tail-recursive max function (i.e., a function that returns the largest element in a list).

Write a tail-recursive Fibonacci sequence function (i.e., a function that returns the n'th number of the Fibonacci sequence).
(fib 1) $=>1$
(fib 2) $=>1$
(fib 3) $=>2$
(fib 4) $=>3$
(fib 5) $=>5$
In general, (fib n) $=(+(f i b(-n 1))(f i b(-n 2)))$

```
(define (maxtr lst)
(define (maxtr-helper lst max-so-far)
    (cond ((null? lst) max-so-far)
        ((> max-so-far (car lst))
            (maxtr-helper (cdr lst) max-so-far))
        (#t (maxtr-helper (cdr lst) (car lst)))))
(maxtr-helper (cdr lst) (car lst)))
```

(define (fib-tr n)

```
(define (fib-helper n-minus-1 n-minus-2 current-n)
    (if (= current-n \(n\) )
    (+ n-minus-1 n-minus-2)
    (fib-helper (+ n-minus-1 n-minus-2)
        n-minus-1
        (+ 1 current-n))))
```

(if (<n 3) 1 (fib-helper 1 1 3)))

