
Programming Languages 
 

Tail Recursion and Accumulators 

Material adapted from  
Dan Grossman's PL class, U. Washington 



Recursion 
Should now be comfortable with recursion: 

•  No harder than using a loop (Maybe?) 
 

•  Often much easier than a loop  
–  When processing a tree (e.g., evaluate an arithmetic 

expression) 
–  Avoids mutation even for local variables 

•  Now:  
–  How to reason about efficiency of recursion 
–  The importance of tail recursion 
–  Using an accumulator to achieve tail recursion 
–  [No new language features here] 
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Call-stacks 

While a program runs, there is a call stack of function calls that 
have started but not yet returned 

–  Calling a function f pushes an instance of f on the stack 
–  When a call to f to finishes, it is popped from the stack 

These stack frames store information such as 
•  the values of arguments and local variables 
•  information about “what is left to do” in the function (further 

computations to do with results from other function calls) 
Due to recursion, multiple stack-frames may be calls to the same 
function 
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Example 
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(define (fact n) 
 (if (= n 0) 1 
  (* n (fact (- n 1))))) 

(fact 3) => (* 3 _)  (fact 3) 

(fact 2) 

(fact 3) => (* 3 _)  

(fact 0) 

(fact 1) 

(fact 2) => (* 2 _)  

(fact 1) => (* 1 _) 

(fact 2) => (* 2 _)  

(fact 3) => (* 3 _)  

(fact 3) => (* 3 _)  (fact 3) => (* 3 2) 

(fact 2) => (* 2 1) 

(fact 3) => (* 3 _)  

(fact 0) => 1 

(fact 1) => (* 1 1) 

(fact 2) => (* 2 _)  

(fact 1) => (* 1 _) 

(fact 2) => (* 2 _)  

(fact 3) => (* 3 _)  



What's being computed 

(fact 3) !
     => (* 3 (fact 2))!
     => (* 3 (* 2 (fact 1)))!
     => (* 3 (* 2 (* 1 (fact 0))))!
     => (* 3 (* 2 (* 1 1)))!
     => (* 3 (* 2 1))!
     => (* 3 2)!
     => 6!
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Example Revised 

(define (fact2 n) 
 
 (define (fact2-helper n acc) 
  (if (= n 0) acc 
   (fact2-helper (- n 1) (* acc n)))) 

 
 (fact2-helper n 1)) 

Still recursive, more complicated, but the result of recursive 
calls is the result for the caller (no remaining multiplication) 
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Example Revised 
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(fact2 3) => _  (fact2 3) 

(f2-h 3 1) 

(fact2 3) => _  

(f2-h 1 6) 

(f2-h 2 3) 

(f2-h 3 1) => _ 

(f2-h 2 3) => _ 

(f2-h 3 1) => _ 

(fact2 3) => _  

(fact2 3) => _  (fact2 3) => _  

(f2-h 3 1) => _ 

(fact2 3) => _  

(f2-h 1 6) => _  

(f2-h 2 3) => _ 

(f2-h 3 1) => _ 

(f2-h 2 3) => _ 

(f2-h 3 1) => _ 

(fact2 3) => _  

(define (fact2 n) 
 (define (fact2-helper n acc) 
  (if (= n 0) acc 
   (fact2-helper (- n 1) (* acc n)))) 
 (fact2-helper n 1)) 

(f2-h 0 6)  

(f2-h 3 1) => _ 

(f2-h 2 3) => _ 

(f2-h 1 6) => _  

(f2-h 0 6) => 6  

(f2-h 1 6) => 6  

(f2-h 2 3) => 6 



What's being computed 

(fact2 3)!
     => (fact2-helper 3 1)!
     => (fact2-helper 2 3)!
     => (fact2-helper 1 6)!
     => (fact2-helper 0 6)!
     => 6!
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An optimization 

It is unnecessary to keep around a stack-frame just so it can get a 
callee’s result and return it without any further evaluation 
 
Racket recognizes these tail calls in the compiler and treats them 
differently: 

–  Pop the caller before the call, allowing callee to reuse the 
same stack space 

–  (Along with other optimizations,) as efficient as a loop 

(Reasonable to assume all functional-language implementations do 
tail-call optimization) 

 includes Racket, Scheme, LISP, ML, Haskell, OCaml… 
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What really happens 
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(fact 3) (f2-h 3 1) (f2-h 2 3) (f2-h 1 6) (f2-h 0 6) 

(define (fact2 n) 
 
 (define (fact2-helper n acc) 
  (if (= n 0) acc 
   (fact2-helper (- n 1) (* acc n)))) 

 
 (fact2-helper n 1)) 



Moral 

•  Where reasonably elegant, feasible, and important, rewriting 
functions to be tail-recursive can be much more efficient 
–  Tail-recursive: recursive calls are tail-calls  

•  meaning all recursive calls must be the last thing the 
calling function does 

•  no additional computation with the result of the callee 
•  There is also a methodology to guide this transformation: 

–  Create a helper function that takes an accumulator 
–  Old base case's return value becomes initial accumulator 

value 
–  Final accumulator value becomes new base case return 

value 
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(define (fact2 n) 
 
 (define (fact2-helper n acc) 
  (if (= n 0) acc 
   (fact2-helper (- n 1) (* acc n)))) 

 
 (fact2-helper n 1)) 

(define (fact n) 
 (if (= n 0) 1 
  (* n (fact (- n 1))))) 

Final accumulator 
value becomes new 
base case return value. 

Old base case's 
return value becomes 
initial accumulator 
value. 



Another example 
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(define (sum1 lst) 
 (if (null? lst) 0 
  (+ (car lst) (sum1 (cdr lst))))) 

(define (sum2 lst) 
 
 (define (sum2-helper lst acc) 
    (if (null? lst) acc 
       (sum2-helper (cdr lst) (+ (car lst) acc)))) 

 
 (sum2-helper lst 0)) 



And another 
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(define (rev1 lst) 
 (if (null? lst) '() 
   (append (rev1 (cdr lst)) (list (car lst))))) 

(define (rev2 lst) 
 
 (define (rev2-helper lst acc) 
   (if (null? lst) acc 
     (rev2-helper (cdr lst) (cons (car lst) acc)))) 
  

  (rev2-helper lst '())) 



Actually much better 

•  For fact and sum, tail-recursion is faster but both ways linear time 
•  The non-tail recursive rev is quadratic because each recursive call 

uses append, which must traverse the first list 
–  And 1 + 2 + … + (length-1) is almost length * length / 2  
–  Moral: beware append, especially if 1st argument is result of a 

recursive call 
•  cons is constant-time (and fast), so the accumulator version rocks 
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(define (rev1 lst)    ; Bad version (non T-R) 
 (if (null? lst) '() 
   (append (rev1 (cdr lst)) (list (car lst))))) 



Tail-recursion == while loop with local 
variable 

Spring 2013 17 Programming Languages 

(define (fact2 n) 
  (define (fact2-helper n acc) 
    (if (= n 0) acc 
      (fact2-helper (- n 1) (* acc n)))) 
 (fact2-helper n 1)) 

def fact2(n): 
  acc = 1 
  while n != 0: 
    acc = acc * n 
    n = n – 1 
  return acc    



Tail-recursion == while loop with local 
variable 
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(define (sum2 lst) 
  (define (sum2-helper lst acc) 
    (if (null? lst) acc 
      (sum2-helper (cdr lst) (+ (car lst) acc)))) 
 (sum2-helper lst 0)) 

def sum2(lst): 
  acc = 0 
  while lst != []: 
    acc = lst[0] + acc 
    lst = lst[1:] 
  return acc    



Tail-recursion == while loop with local 
variable 
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(define (rev2 lst) 
  (define (rev2-helper lst acc) 
    (if (null? lst) acc 
      (rev2-helper (cdr lst) (cons (car lst) acc)))) 
  (rev2-helper lst '())) 

def rev2(lst): 
  acc = [] 
  while lst != []: 
    acc = [lst[0]] + acc 
    lst = lst[1:] 
  return acc    



Always tail-recursive? 

There are certainly cases where recursive functions cannot be 
evaluated in a constant amount of space 
 
Example: functions that process trees 

–  Lists can be used to  
represent trees: '((1 2) ((3 4) 5)) 

 
In these cases, the natural recursive approach is the way to go 

–  You could get one recursive call to be a tail call, but rarely 
worth the complication 
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1     2                 5 
             3     4 



Precise definition 
If the result of (f x) is the “return value” for the enclosing function 
body, then (f x) is a tail call   
       i.e., don't have to do any more processing of (f x) to end function 
 
Can define this notion more precisely… 
•  A tail call is a function call in tail position 
•  The single expression (ignoring nested defines) of the body of a 

function is in tail position. 
•  If (if test e1 e2) is in tail position, then e1 and e2 are in tail 

position (but test is not).  (Similar for cond-expressions) 
•  If a let-expression is in tail position, then the single expression of 

the body of the let is in tail position (but no variable bindings are) 
•  Arguments to a function call are not in tail position 
•  … 
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Are these functions tail-recursive? 

(define (get-nth lst n)!
  (if (= n 0) (car lst)!
    (get-nth (cdr lst) (- n 1))))!
!
(define (good-max lst)!
  (cond!
    ((null? (cdr lst))!
      (car lst))!
    (#t!
      (let ((max-of-cdr (good-max (cdr lst))))!
        (if (> (car lst) max-of-cdr)!
          (car lst) max-of-cdr)))))!
!
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Try these… 

Write a tail-recursive max function (i.e., a function that returns the 
largest element in a list). 
 
Write a tail-recursive Fibonacci sequence function (i.e., a function 
that returns the n'th number of the Fibonacci sequence). 

 (fib 1) => 1 
 (fib 2) => 1 
 (fib 3) => 2 
 (fib 4) => 3 
 (fib 5) => 5 
 In general, (fib n) = (+ (fib (- n 1)) (fib (-n 2))) 
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(define (maxtr lst)!
  (define (maxtr-helper lst max-so-far)!
    (cond ((null? lst) max-so-far)!
          ((> max-so-far (car lst)) !
            (maxtr-helper (cdr lst) max-so-far))!
          (#t (maxtr-helper (cdr lst) (car lst)))))!
  (maxtr-helper (cdr lst) (car lst)))!
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(define (fib-tr n)!
!
  (define (fib-helper n-minus-1 n-minus-2 current-n)!
    (if (= current-n n) !
      (+ n-minus-1 n-minus-2)!
      (fib-helper (+ n-minus-1 n-minus-2) !
                  n-minus-1 !
                  (+ 1 current-n))))!
!
  (if (< n 3) 1 (fib-helper 1 1 3)))!
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