
Programming Languages

Tail Recursion and Accumulators

Material adapted from
Dan Grossman's PL class, U. Washington

Recursion
Should now be comfortable with recursion:

•  No harder than using a loop (Maybe?)

•  Often much easier than a loop
–  When processing a tree (e.g., evaluate an arithmetic

expression)
–  Avoids mutation even for local variables

•  Now:
–  How to reason about efficiency of recursion
–  The importance of tail recursion
–  Using an accumulator to achieve tail recursion
–  [No new language features here]

Spring 2013 2 Programming Languages

Call-stacks

While a program runs, there is a call stack of function calls that
have started but not yet returned

–  Calling a function f pushes an instance of f on the stack
–  When a call to f to finishes, it is popped from the stack

These stack frames store information such as
•  the values of arguments and local variables
•  information about “what is left to do” in the function (further

computations to do with results from other function calls)
Due to recursion, multiple stack-frames may be calls to the same
function

Spring 2013 3 Programming Languages

Example

Spring 2013 4 Programming Languages

(define (fact n)
 (if (= n 0) 1
 (* n (fact (- n 1)))))

(fact 3) => (* 3 _) (fact 3)

(fact 2)

(fact 3) => (* 3 _)

(fact 0)

(fact 1)

(fact 2) => (* 2 _)

(fact 1) => (* 1 _)

(fact 2) => (* 2 _)

(fact 3) => (* 3 _)

(fact 3) => (* 3 _) (fact 3) => (* 3 2)

(fact 2) => (* 2 1)

(fact 3) => (* 3 _)

(fact 0) => 1

(fact 1) => (* 1 1)

(fact 2) => (* 2 _)

(fact 1) => (* 1 _)

(fact 2) => (* 2 _)

(fact 3) => (* 3 _)

What's being computed

(fact 3) !
 => (* 3 (fact 2))!
 => (* 3 (* 2 (fact 1)))!
 => (* 3 (* 2 (* 1 (fact 0))))!
 => (* 3 (* 2 (* 1 1)))!
 => (* 3 (* 2 1))!
 => (* 3 2)!
 => 6!

Spring 2013 5 Programming Languages

Example Revised

(define (fact2 n)

 (define (fact2-helper n acc)
 (if (= n 0) acc
 (fact2-helper (- n 1) (* acc n))))

 (fact2-helper n 1))

Still recursive, more complicated, but the result of recursive
calls is the result for the caller (no remaining multiplication)

Spring 2013 Programming Languages 6

Example Revised

Spring 2013 7 Programming Languages

(fact2 3) => _ (fact2 3)

(f2-h 3 1)

(fact2 3) => _

(f2-h 1 6)

(f2-h 2 3)

(f2-h 3 1) => _

(f2-h 2 3) => _

(f2-h 3 1) => _

(fact2 3) => _

(fact2 3) => _ (fact2 3) => _

(f2-h 3 1) => _

(fact2 3) => _

(f2-h 1 6) => _

(f2-h 2 3) => _

(f2-h 3 1) => _

(f2-h 2 3) => _

(f2-h 3 1) => _

(fact2 3) => _

(define (fact2 n)
 (define (fact2-helper n acc)
 (if (= n 0) acc
 (fact2-helper (- n 1) (* acc n))))
 (fact2-helper n 1))

(f2-h 0 6)

(f2-h 3 1) => _

(f2-h 2 3) => _

(f2-h 1 6) => _

(f2-h 0 6) => 6

(f2-h 1 6) => 6

(f2-h 2 3) => 6

What's being computed

(fact2 3)!
 => (fact2-helper 3 1)!
 => (fact2-helper 2 3)!
 => (fact2-helper 1 6)!
 => (fact2-helper 0 6)!
 => 6!

Spring 2013 9 Programming Languages

An optimization

It is unnecessary to keep around a stack-frame just so it can get a
callee’s result and return it without any further evaluation

Racket recognizes these tail calls in the compiler and treats them
differently:

–  Pop the caller before the call, allowing callee to reuse the
same stack space

–  (Along with other optimizations,) as efficient as a loop

(Reasonable to assume all functional-language implementations do
tail-call optimization)

 includes Racket, Scheme, LISP, ML, Haskell, OCaml…

Spring 2013 10 Programming Languages

What really happens

Spring 2013 11 Programming Languages

(fact 3) (f2-h 3 1) (f2-h 2 3) (f2-h 1 6) (f2-h 0 6)

(define (fact2 n)

 (define (fact2-helper n acc)
 (if (= n 0) acc
 (fact2-helper (- n 1) (* acc n))))

 (fact2-helper n 1))

Moral

•  Where reasonably elegant, feasible, and important, rewriting
functions to be tail-recursive can be much more efficient
–  Tail-recursive: recursive calls are tail-calls

•  meaning all recursive calls must be the last thing the
calling function does

•  no additional computation with the result of the callee
•  There is also a methodology to guide this transformation:

–  Create a helper function that takes an accumulator
–  Old base case's return value becomes initial accumulator

value
–  Final accumulator value becomes new base case return

value

Spring 2013 12 Programming Languages

Spring 2013 13 Programming Languages

(define (fact2 n)

 (define (fact2-helper n acc)
 (if (= n 0) acc
 (fact2-helper (- n 1) (* acc n))))

 (fact2-helper n 1))

(define (fact n)
 (if (= n 0) 1
 (* n (fact (- n 1)))))

Final accumulator
value becomes new
base case return value.

Old base case's
return value becomes
initial accumulator
value.

Another example

Spring 2013 14 Programming Languages

(define (sum1 lst)
 (if (null? lst) 0
 (+ (car lst) (sum1 (cdr lst)))))

(define (sum2 lst)

 (define (sum2-helper lst acc)
 (if (null? lst) acc
 (sum2-helper (cdr lst) (+ (car lst) acc))))

 (sum2-helper lst 0))

And another

Spring 2013 15 Programming Languages

(define (rev1 lst)
 (if (null? lst) '()
 (append (rev1 (cdr lst)) (list (car lst)))))

(define (rev2 lst)

 (define (rev2-helper lst acc)
 (if (null? lst) acc
 (rev2-helper (cdr lst) (cons (car lst) acc))))

 (rev2-helper lst '()))

Actually much better

•  For fact and sum, tail-recursion is faster but both ways linear time
•  The non-tail recursive rev is quadratic because each recursive call

uses append, which must traverse the first list
–  And 1 + 2 + … + (length-1) is almost length * length / 2
–  Moral: beware append, especially if 1st argument is result of a

recursive call
•  cons is constant-time (and fast), so the accumulator version rocks

Spring 2013 16 Programming Languages

(define (rev1 lst) ; Bad version (non T-R)
 (if (null? lst) '()
 (append (rev1 (cdr lst)) (list (car lst)))))

Tail-recursion == while loop with local
variable

Spring 2013 17 Programming Languages

(define (fact2 n)
 (define (fact2-helper n acc)
 (if (= n 0) acc
 (fact2-helper (- n 1) (* acc n))))
 (fact2-helper n 1))

def fact2(n):
 acc = 1
 while n != 0:
 acc = acc * n
 n = n – 1
 return acc

Tail-recursion == while loop with local
variable

Spring 2013 18 Programming Languages

(define (sum2 lst)
 (define (sum2-helper lst acc)
 (if (null? lst) acc
 (sum2-helper (cdr lst) (+ (car lst) acc))))
 (sum2-helper lst 0))

def sum2(lst):
 acc = 0
 while lst != []:
 acc = lst[0] + acc
 lst = lst[1:]
 return acc

Tail-recursion == while loop with local
variable

Spring 2013 19 Programming Languages

(define (rev2 lst)
 (define (rev2-helper lst acc)
 (if (null? lst) acc
 (rev2-helper (cdr lst) (cons (car lst) acc))))
 (rev2-helper lst '()))

def rev2(lst):
 acc = []
 while lst != []:
 acc = [lst[0]] + acc
 lst = lst[1:]
 return acc

Always tail-recursive?

There are certainly cases where recursive functions cannot be
evaluated in a constant amount of space

Example: functions that process trees

–  Lists can be used to
represent trees: '((1 2) ((3 4) 5))

In these cases, the natural recursive approach is the way to go

–  You could get one recursive call to be a tail call, but rarely
worth the complication

Spring 2013 20 Programming Languages

1 2 5
 3 4

Precise definition
If the result of (f x) is the “return value” for the enclosing function
body, then (f x) is a tail call
 i.e., don't have to do any more processing of (f x) to end function

Can define this notion more precisely…
•  A tail call is a function call in tail position
•  The single expression (ignoring nested defines) of the body of a

function is in tail position.
•  If (if test e1 e2) is in tail position, then e1 and e2 are in tail

position (but test is not). (Similar for cond-expressions)
•  If a let-expression is in tail position, then the single expression of

the body of the let is in tail position (but no variable bindings are)
•  Arguments to a function call are not in tail position
•  …

Spring 2013 21 Programming Languages

Are these functions tail-recursive?

(define (get-nth lst n)!
 (if (= n 0) (car lst)!
 (get-nth (cdr lst) (- n 1))))!
!
(define (good-max lst)!
 (cond!
 ((null? (cdr lst))!
 (car lst))!
 (#t!
 (let ((max-of-cdr (good-max (cdr lst))))!
 (if (> (car lst) max-of-cdr)!
 (car lst) max-of-cdr)))))!
!
Spring 2013 22 Programming Languages

Try these…

Write a tail-recursive max function (i.e., a function that returns the
largest element in a list).

Write a tail-recursive Fibonacci sequence function (i.e., a function
that returns the n'th number of the Fibonacci sequence).

 (fib 1) => 1
 (fib 2) => 1
 (fib 3) => 2
 (fib 4) => 3
 (fib 5) => 5
 In general, (fib n) = (+ (fib (- n 1)) (fib (-n 2)))

Spring 2013 23 Programming Languages

(define (maxtr lst)!
 (define (maxtr-helper lst max-so-far)!
 (cond ((null? lst) max-so-far)!
 ((> max-so-far (car lst)) !
 (maxtr-helper (cdr lst) max-so-far))!
 (#t (maxtr-helper (cdr lst) (car lst)))))!
 (maxtr-helper (cdr lst) (car lst)))!

Spring 2013 24 Programming Languages

(define (fib-tr n)!
!
 (define (fib-helper n-minus-1 n-minus-2 current-n)!
 (if (= current-n n) !
 (+ n-minus-1 n-minus-2)!
 (fib-helper (+ n-minus-1 n-minus-2) !
 n-minus-1 !
 (+ 1 current-n))))!
!
 (if (< n 3) 1 (fib-helper 1 1 3)))!

Spring 2013 25 Programming Languages

