
Programming Languages

First Class Functions

Material adapted from Dan Grossman's PL
class, U. Washington

Spring 2013 2 Programming Languages

Functions

Spring 2013 3 Programming Languages

Today's lecture will take your programming skills from this…

Spring 2013 4 Programming Languages

…to this!

An Example

•  What if we wanted to add up all the numbers from a to b?

(define (sum a b)!
 (if (> a b)!
 0!
 (+ a !
 (sum (+ a 1) b))))!
!
!

Spring 2013 5 Programming Languages

i
i=a

b

!

An Example

•  What if we wanted to add up the sum of the squares of the
numbers from a to b:

(define (sum-squares a b)!
 (if (> a b)!
 0!
 (+ (expt a 2)  
 (sum-squares (+ a 1) b))))!
!
!

Spring 2013 6 Programming Languages

i2
i=a

b

!

An Example

•  What if we wanted to add up the sum of the square roots of the
numbers from a to b:

(define (sum-square-roots a b)!
 (if (= a b)!
 0!
 (+ (sqrt a) !
 (sum-square-roots (+ a 1) b))))!
!
!

Spring 2013 7 Programming Languages

i
i=a

b

!

These functions are all very similar

•  All three of these functions differ only in how the sequence of
integers from a to b are transformed before they are all added
together.

•  The adding process itself is identical in all of the functions:

(define (sum-something a b)!
 (if (> a b)!
 0!
 (+ (do something to a) !
 (sum-something (+ a 1) b))))  

•  What if there were a general sum function that could sum up any

sequence of this form?

Spring 2013 8 Programming Languages

A function that takes a function

•  Here's a general purpose sum function that takes an argument,
called func, that will be applied to each element in the sequence
from a to b before the elements are summed:

(define (sum-any func a b)!
 (if (> a b)!
 0!
 (+ (func a)!
 (sum-any func (+ a 1) b))))  

Spring 2013 9 Programming Languages

Sum-any in action!

(sum-any sqrt 1 10)!
 => sqrt(1) + sqrt(2) + sqrt(3) + …!
 => about 22.5!
!
(define (square x) (* x x))!
(sum-any square 1 4)!
 => 1^2 + 2^2 + 3^2 + 4^2 => 1 + 4 + 9 + 16 => 30!
!
(define (identity x) x)!
(sum-any identity 1 4)!
 => 10!

Spring 2013 10 Programming Languages

How to use sum-any

•  You can put the name of any function in place of sqrt, square,
or identity, and sum-any will compute

f(a) + f(a + 1) + f(a + 2) + … + f(b)

–  Provided f is a function of a single numeric argument.

•  What if you want to compute f(a^2/2) + f((a+1)^2/2) + …

–  Fine to do:
(define (silly-function x) (/ (* x x) 2))!
(sum-any silly-function 1 10) !

Spring 2013 11 Programming Languages

•  But this is better:

(sum-any (lambda (x) (/ (* x x) 2)) 1 10)!
!
•  Recall that lambda creates an anonymous function:

–  (lambda (arg1 arg2…) expression)!

(define (sum-any func a b) . . .)  
 
(sum-any square 1 10)!
(sum-any sqrt 3 5)!
(sum-any identity -8 80)!
(sum-any (lambda (x) (/ (* x x) 2)) 1 10)!

Spring 2013 12 Programming Languages

Using anonymous functions

•  Most common use: Argument to a higher-order function
–  Don’t need a name just to pass a function

•  But: Cannot use an anonymous function for a recursive function
–  Because there is no name for making recursive calls

Spring 2013 13 Programming Languages

(define (triple x) (* 3 x); named version

(lambda (x) (* 3 x)) ; anonymous version

Named functions vs anonymous functions

•  Named functions are mostly indistinguishable from anonymous
functions.

•  In fact, naming a function with define uses the anonymous
form behind the scenes:

(define (func arg1 arg2 …) expression)
is converted to:
(define func (lambda (arg1 arg2 …) expression))!

•  It is poor style to define unnecessary functions in the global (top-
level) environment
–  Use either nested defines, or anonymous functions.

Spring 2013 14 Programming Languages

Higher-order functions

•  A higher-order function is a function that either takes a function
(or more than one function) as an argument, or returns a
function as a return value.

•  Possible because functions are first-class values (or first-class
citizens), meaning we can use a function wherever we use a
value.
–  Arguments, results of functions, elements of lists, bound to

variables, etc
•  Most common use is as an argument / result of another function

Spring 2013 15 Programming Languages

Higher-order functions

•  Let's see another:

(define (do-n-times func n x)!
 (if (= n 0) x !
 (do-n-times func (- n 1) (func x))))  

•  This function computes f(f(f…(x))), where the number of

applications of f is n.

Spring 2013 16 Programming Languages

Some uses for do-n-times

•  Get-nth:
–  (define (get-nth lst n)  
 (car (do-n-times cdr n lst)))  
!

•  Exponentiation:
–  (define (power x y) ; raise x to the y power  
 (do-n-times (lambda (a) (* x a)) y 1))  
!

•  Note how in the exponentiation example, the anonymous
function uses variable x from the outer environment.
–  Couldn't do that without being able to nest functions.

•  Note how do-n-times can work with any data type (e.g., lists,
numbers…)

Spring 2013 17 Programming Languages

A style point

Compare:

With:

So don’t do this:

When you can do this:

Spring 2013 25 Programming Languages

(do-n-times (lambda (x) (cdr x)) 3 '(2 4 6 8))

(do-n-times cdr 3 '(2 4 6 8))

(if x #t #f)

(lambda (x) (f x)

What does this function do?

(define (mystery lst)!
 (if (null? lst) '()!
 (cons (car lst) (mystery (cdr lst)))))!

Spring 2013 26 Programming Languages

Map

Map is, without doubt, in the higher-order function hall-of-fame
–  The name is standard (same in most prog languages)
–  You use it all the time once you know it: saves a little space,

but more importantly, communicates what you are doing
–  Built into Racket, so you don't have to include this definition

in programs that use map.

Spring 2013 27 Programming Languages

(define (map func lst)
 (if (null? lst) '()
 (cons (func (car lst)) (map func (cdr lst)))))

Filter

Spring 2013 28 Programming Languages

(define (filter func lst)
 (cond ((null? lst) '())
 ((func (car lst))
 (cons (car lst) (filter func (cdr lst))))
 (#t
 (filter func (cdr lst)))))

Filter is also in the hall-of-fame
–  So use it whenever your computation is a filter

