
Programming Languages

First Class Functions

Material adapted from Dan Grossman's PL class, U. Washington

Today's lecture will take your programming skills from this...

...to this!

An Example

What if we wanted to add up all the numbers from a to b?

```
(define (sum a b)
(if (> a b))
0
(+ a)
(sum (+ a 1) b))))
i=a
```

An Example

 What if we wanted to add up the sum of the squares of the numbers from a to b:

```
(define (sum-squares a b)

(if (> a b)
0
(+ (expt a 2)
(sum-squares (+ a 1) b))))

i=a
```

An Example

 What if we wanted to add up the sum of the square roots of the numbers from a to b:

```
(define (sum-square-roots a b)

(if (= a b)
0
(+ (sqrt a)
(sum-square-roots (+ a 1) b))))

i=a
```

These functions are all very similar

- All three of these functions differ only in how the sequence of integers from a to b are transformed before they are all added together.
- The adding process itself is identical in all of the functions:

 What if there were a general sum function that could sum up any sequence of this form?

A function that takes a function

 Here's a general purpose sum function that takes an argument, called func, that will be applied to each element in the sequence from a to b before the elements are summed:

Sum-any in action!

```
(sum-any sqrt 1 10)
 => sqrt(1) + sqrt(2) + sqrt(3) + ...
 => about 22.5
(define (square x) (* x x))
(sum-any square 1 4)
 => 1^2 + 2^2 + 3^2 + 4^2 => 1 + 4 + 9 + 16 => 30
(define (identity x) x)
(sum-any identity 1 4)
 => 10
```

How to use sum-any

 You can put the name of any function in place of sqrt, square, or identity, and sum-any will compute

$$f(a) + f(a + 1) + f(a + 2) + ... + f(b)$$

- Provided f is a function of a single numeric argument.
- What if you want to compute $f(a^2/2) + f((a+1)^2/2) + ...$
 - Fine to do:

```
(define (silly-function x) (/ (* x x) 2)) (sum-any silly-function 1 10)
```

But this is better:

```
(sum-any (lambda (x) (/ (* x x) 2)) 1 10)
```

- Recall that lambda creates an anonymous function:
 - (lambda (arg1 arg2...) expression)

```
(define (sum-any func a b) . . . )
(sum-any square 1 10)
(sum-any sqrt 3 5)
(sum-any identity -8 80)
(sum-any (lambda (x) (/ (* x x) 2)) 1 10)
```

Using anonymous functions

- Most common use: Argument to a higher-order function
 - Don't need a name just to pass a function
- But: Cannot use an anonymous function for a recursive function
 - Because there is no name for making recursive calls

```
(define (triple x) (* 3 x); named version
(lambda (x) (* 3 x)) ; anonymous version
```

Named functions vs anonymous functions

- Named functions are mostly indistinguishable from anonymous functions.
- In fact, naming a function with define uses the anonymous form behind the scenes:

```
(define (func arg1 arg2 ...) expression)
is converted to:
  (define func (lambda (arg1 arg2 ...) expression))
```

- It is poor style to define unnecessary functions in the global (toplevel) environment
 - Use either nested defines, or anonymous functions.

Higher-order functions

- A higher-order function is a function that either takes a function (or more than one function) as an argument, or returns a function as a return value.
- Possible because functions are first-class values (or first-class citizens), meaning we can use a function wherever we use a value.
 - Arguments, results of functions, elements of lists, bound to variables, etc
- Most common use is as an argument / result of another function

Higher-order functions

Let's see another:

```
(define (do-n-times func n x)
  (if (= n 0) x
      (do-n-times func (- n 1) (func x))))
```

• This function computes f(f(f...(x))), where the number of applications of f is n.

Some uses for do-n-times

Get-nth:

```
- (define (get-nth lst n)
          (car (do-n-times cdr n lst)))
```

Exponentiation:

```
- (define (power x y); raise x to the y power (do-n-times (lambda (a) (* x a)) y 1))
```

- Note how in the exponentiation example, the anonymous function uses variable x from the outer environment.
 - Couldn't do that without being able to nest functions.
- Note how do-n-times can work with any data type (e.g., lists, numbers...)

A style point

Compare:

(if x #t #f)

With:

(lambda (x) (f x)

So don't do this:

```
(do-n-times (lambda (x) (cdr x)) 3 '(2 4 6 8))
```

When you can do this:

```
(do-n-times cdr 3 '(2 4 6 8))
```

What does this function do?

```
(define (mystery lst)
  (if (null? lst) '()
      (cons (car lst) (mystery (cdr lst)))))
```

Map

```
(define (map func lst)
  (if (null? lst) '()
     (cons (func (car lst)) (map func (cdr lst)))))
```

Map is, without doubt, in the higher-order function hall-of-fame

- The name is standard (same in most prog languages)
- You use it all the time once you know it: saves a little space,
 but more importantly, communicates what you are doing
- Built into Racket, so you don't have to include this definition in programs that use map.

Filter

Filter is also in the hall-of-fame

So use it whenever your computation is a filter