
Programming Languages 
 

First Class Functions 

Material adapted from Dan Grossman's PL 
class, U. Washington 
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Functions 
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Today's lecture will take your programming skills from this… 
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…to this! 



An Example 

•  What if we wanted to add up all the numbers from a to b? 
 
 

(define (sum a b)!
  (if (> a b)!
    0!
    (+ a !
       (sum (+ a 1) b))))!
!
!
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An Example 

•  What if we wanted to add up the sum of the squares of the 
numbers from a to b: 
 

(define (sum-squares a b)!
  (if (> a b)!
    0!
    (+ (expt a 2)  
       (sum-squares (+ a 1) b))))!
!
!
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An Example 

•  What if we wanted to add up the sum of the square roots of the 
numbers from a to b: 
 

(define (sum-square-roots a b)!
  (if (= a b)!
    0!
    (+ (sqrt a) !
       (sum-square-roots (+ a 1) b))))!
!
!
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These functions are all very similar 

•  All three of these functions differ only in how the sequence of 
integers from a to b are transformed before they are all added 
together. 

•  The adding process itself is identical in all of the functions: 

(define (sum-something a b)!
  (if (> a b)!
    0!
    (+ (do something to a) !
       (sum-something (+ a 1) b))))  
 
•  What if there were a general sum function that could sum up any 

sequence of this form? 
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A function that takes a function 

•  Here's a general purpose sum function that takes an argument, 
called func, that will be applied to each element in the sequence 
from a to b before the elements are summed: 

 
(define (sum-any func a b)!
  (if (> a b)!
    0!
    (+ (func a)!
       (sum-any func (+ a 1) b))))  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Sum-any in action! 

(sum-any sqrt 1 10)!
  => sqrt(1) + sqrt(2) + sqrt(3) + …!
  => about 22.5!
!
(define (square x) (* x x))!
(sum-any square 1 4)!
  => 1^2 + 2^2 + 3^2 + 4^2 => 1 + 4 + 9 + 16 => 30!
!
(define (identity x) x)!
(sum-any identity 1 4)!
  => 10!
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How to use sum-any 

•  You can put the name of any function in place of sqrt, square, 
or identity, and sum-any will compute 
 
f(a) + f(a + 1) + f(a + 2) + … + f(b) 
 
–  Provided f is a function of a single numeric argument. 

 
•  What if you want to compute f(a^2/2) + f((a+1)^2/2) + … 

–  Fine to do: 
(define (silly-function x) (/ (* x x) 2))!
(sum-any silly-function 1 10) !

Spring 2013 11 Programming Languages 



•  But this is better: 

(sum-any (lambda (x) (/ (* x x) 2)) 1 10)!
!
•  Recall that lambda creates an anonymous function: 

–  (lambda (arg1 arg2…) expression)!

(define (sum-any func a b) . . . )  
 
(sum-any square 1 10)!
(sum-any sqrt 3 5)!
(sum-any identity -8 80)!
(sum-any (lambda (x) (/ (* x x) 2)) 1 10)!
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Using anonymous functions 

•  Most common use:  Argument to a higher-order function 
–  Don’t need a name just to pass a function 

•  But:  Cannot use an anonymous function for a recursive function 
–  Because there is no name for making recursive calls 
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(define (triple x) (* 3 x); named version 
 
(lambda (x) (* 3 x))      ; anonymous version 



Named functions vs anonymous functions 

•  Named functions are mostly indistinguishable from anonymous 
functions. 

•  In fact, naming a function with define uses the anonymous 
form behind the scenes: 
 

(define (func arg1 arg2 …) expression) 
is converted to: 
(define func (lambda (arg1 arg2 …) expression))!

•  It is poor style to define unnecessary functions in the global (top-
level) environment 
–  Use either nested defines, or anonymous functions. 
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Higher-order functions 

•  A higher-order function is a function that either takes a function 
(or more than one function) as an argument, or returns a 
function as a return value. 

•  Possible because functions are first-class values (or first-class 
citizens), meaning we can use a function wherever we use a 
value. 
–  Arguments, results of functions, elements of lists, bound to 

variables, etc 
•  Most common use is as an argument / result of another function 
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Higher-order functions 

•  Let's see another: 
 

(define (do-n-times func n x)!
  (if (= n 0) x !
    (do-n-times func (- n 1) (func x))))  
 
•  This function computes f(f(f…(x))), where the number of 

applications of f is n. 
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Some uses for do-n-times 

•  Get-nth: 
–  (define (get-nth lst n)  
  (car (do-n-times cdr n lst)))  
!

•  Exponentiation: 
–  (define (power x y) ; raise x to the y power  
  (do-n-times (lambda (a) (* x a)) y 1))  
!

•  Note how in the exponentiation example, the anonymous 
function uses variable x from the outer environment. 
–  Couldn't do that without being able to nest functions. 

•  Note how do-n-times can work with any data type (e.g., lists, 
numbers…) 
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A style point 

Compare: 
 
With: 
 
 
So don’t do this: 
 
 
When you can do this: 
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(do-n-times (lambda (x) (cdr x)) 3 '(2 4 6 8)) 

(do-n-times cdr 3 '(2 4 6 8)) 

(if x #t #f) 
 
 

(lambda (x) (f x) 



What does this function do? 

(define (mystery lst)!
  (if (null? lst) '()!
    (cons (car lst) (mystery (cdr lst)))))!
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Map 

Map is, without doubt, in the higher-order function hall-of-fame 
–  The name is standard (same in most prog languages) 
–  You use it all the time once you know it: saves a little space, 

but more importantly, communicates what you are doing 
–  Built into Racket, so you don't have to include this definition 

in programs that use map. 
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(define (map func lst) 
  (if (null? lst) '() 
    (cons (func (car lst)) (map func (cdr lst))))) 



Filter 
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(define (filter func lst) 
  (cond ((null? lst) '()) 
        ((func (car lst))  
            (cons (car lst) (filter func (cdr lst)))) 
        (#t  
            (filter func (cdr lst))))) 

Filter is also in the hall-of-fame 
–  So use it whenever your computation is a filter 


