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Function-Closure Idioms 

Adapted from Dan Grossman's PL class,  
U. of Washington 



More idioms 

•  We know the rule for lexical scope and function closures 
–  Now what is it good for 

 
A partial but wide-ranging list: 
 

•  Pass functions with private data to iterators (map/filter): Done 

•  Combine functions (e.g., composition) 

•  Currying (multi-arg functions and partial application) 

•  Callbacks (e.g., in reactive programming) 

•  Implementing an ADT with a record of functions 
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Combine functions 

Canonical example is function composition: 

•  Creates a closure that “remembers” what f and g are bound to 
•  This function is built-in to Racket; but this definition is basically 

how it works. 
•  3rd version is the best (clearest as to what it does): 
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(define (compose f g) (lambda (x) (f (g x)))) 
 

(define (sqrt-of-abs i) (sqrt (abs i))) 
(define (sqrt-of-abs i) ((compose sqrt abs) i)) 
(define sqrt-of-abs (compose sqrt abs)) 



Currying and Partial Application 
•  Currying is the idea of calling a function with an incomplete set 

of arguments. 
•  When you "curry" a function, you get a function back that 

accepts the remaining arguments. 
•  Named after Haskell Curry, who studied related ideas in logic. 
•  Useful in situations where you want to call/pass a function, but 

you don't know the values for all the arguments yet. 
–  Ex: a function of two arguments, but coming from two 

separate places (scopes) in your program. 
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Motivation example 

•  We want to write code that takes a list of numbers and returns a 
list of the number 4 raised to the power of each number. 
–  in: (x1 x2 … xn)!
–  out: (4^x1 4^x2 … 4^xn)!

•  We could use a lambda expression: 
–  (map (lambda (x) (expt 4 x)) lst)!

•  But this can get tedious to do over and over. 
•  What if the expt function were defined differently? 
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Currying and Partial Application 

•  We know (expt x y) raises x to the y'th power. 
•  We could define a different version of expt like this: 
•  (define (expt-curried x)  

  (lambda (y) (expt x y))!
•  We can call this function like this: 

 ((expt-curried 4) 2)!
•  This is an incredibly flexible definition: 

–  We can call with two arguments as normal (with extra parens) 
–  Or call with one argument to get a function that accepts the 

remaining argument. 
•  This is critical in some other functional languages (albeit, not Racket 

or Scheme) where functions may have at most one argument. 
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Currying and Partial Application 

•  Currying is still useful in Racket with the curry function: 
–  Turns a function (f x1 x2 x3 … xn)  

into a function ((((f x1) x2) x3) … xn)!
–  curry takes a function f and some optional arguments 
–  Returns a function that accumulates remaining arguments until 
f can be called (all arguments are present). 

•  (curry expt 4) == (expt-curried 4)!
•  ((curry expt 4) 2) == ((expt-curried 4) 2)!
•  These can be useful in definitions themselves: 

–  (define (double x) (* 2 x))!
–  (define double (curry * 2))!

Spring 2013 9 Programming Languages 



Currying and Partial Application 
•  Currying is also useful to shorten longish lambda expressions: 
•  Old way: (map (lambda (x) (+ x 1)) '(1 2 3))!
•  New way: (map (curry + 1) '(1 2 3))  

!
•  Great for encapsulating private data: list-ref is the built-in get-nth. 

 
(define get-month  
  (curry list-ref '(Jan Feb Mar Apr May Jun  
                    Jul Aug Sep Oct Nov Dec)))  
!

•  This example introduces a new datatype: symbol. 
–  Symbols are similar to strings, except they don't have quotes 

around them (and you can't take them apart or add them 
together like strings). 
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Currying and Partial Application 
•  But this gives zero-based months: 
•  (define get-month  

  (curry list-ref !
      '(Jan Feb Mar Apr May Jun  
        Jul Aug Sep Oct Nov Dec)))  
!
•  Let's subtract one from the argument first: 

(define get-month  
  (compose  
    (curry list-ref !

        '(Jan Feb Mar Apr May Jun  
          Jul Aug Sep Oct Nov Dec))  
      (curryr - 1))) 
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curryr curries 
from right to 
left, rather than 
left to right. 



Currying and Partial Application 
•  Another example: 
(define (eval-polynomial coeff x)!
  (if (null? coeff) 0!
      (+ (* (car coeff) (expt x (- (length coeff) 1)))  
         (eval-polynomial (cdr coeff) x))))!
!
(define (make-polynomial coeff) !
  (lambda (x) (eval-polynomial coeff x))  
 
(define make-polynomial (curry eval-polynomial))!
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Currying and Partial Application 
•  A few more examples: 

•  (map (compose (curry + 2) (curry * 4)) '(1 2 3))!
–  quadruples then adds two to the list '(1 2 3) 
 

•  (filter (curry < 10) '(6 8 10 12))!
–  Careful! curry works from the left, so (curry < 10) is 

equivalent to (lambda (x) (< 10 x)) so this filter keeps 
numbers that are greater than 10. 

•  Probably clearer to do:   
  (filter (curryr > 10) '(6 8 10 12))!

•  (In this case, the confusion is because we are used to "<" being an 
infix operator). 
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Return to the foldr J 
Currying becomes really powerful when you curry higher-order 
functions. 
 
Recall (foldr f init (x1 x2 … xn)) returns  
  (f x1 (f x2 … (f xn-2 (f xn-1 (f xn init))!
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(define (sum-list-ok lst) (foldr + 0 lst)) 
 
(define sum-list-super-cool (curry foldr + 0) 
 
 
 



Another example 

•  Scheme and Racket have andmap and ormap. 
•  (andmap f (x1 x2…)) returns (and (f x1) (f x2) …)!
•  (ormap f (x1 x2…)) returns (or (f x1) (f x2) …)!
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(andmap (curryr > 7) '(8 9 10)) è #t 
(ormap (curryr > 7) '(4 5 6 7 8)) è #t 
(ormap (curryr > 7) '(4 5 6)) è #f 
 
(define contains7 (curry ormap (curry = 7))) 
(define all-are7 (curry andmap (curry = 7))) 



Another example 
Currying and partial application can be convenient even without higher-
order functions. 
  Note: (range a b) returns a list of integers from a to b-1, inclusive. 
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(define (zip lst1 lst2) 
  (if (null? lst1) '() 
      (cons (list (car lst1) (car lst2))  
            (zip (cdr lst1) (cdr lst2))))) 
 
(define countup (curry range 1)) 
 
(define (add-numbers lst)  
  (zip (countup (length lst)) lst)) 



When to use currying 
•  When you write a lambda function of the form 

–  (lambda (y1 y2 …) (f x1 x2 … y1 y2…)) 
•  You can replace that with 

–  (curry f x1 x2 …) 
 
 

•  Similarly, replace 
–  (lambda (y1 y2 …) (f y1 y2 … x1 x2…)) 

•  with 
–  (curryr f x1 x2 …) 
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When to use currying 
•  Try these: 

–  Assuming lst is a list of numbers, write a call to filter 
that keeps all numbers greater than 4. 

–  Assuming lst is a list of lists of numbers, write a call to 
map that adds a 1 to the front of each sublist. 

–  Assuming lst is a list of numbers, write a call to map that 
turns each number (in lst) into the list (1 number). 

–  Assuming lst is a list of numbers, write a call to map that 
squares each number (you should curry expt). 

–  Define a function dist-from-origin in terms of currying a 
function (dist x1 y1 x2 y2) [assume dist is already 
defined elsewhere] 
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Callbacks 

A common idiom: Library takes functions to apply later, when an 
event occurs – examples: 

–  When a key is pressed, mouse moves, data arrives 
–  When the program enters some state (e.g., turns in a game) 

A library may accept multiple callbacks 
–  Different callbacks may need different private data with 

different types 
–  (Can accomplish this in C++ with objects that contain private 

fields.) 
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Mutable state 

While it’s not absolutely necessary, mutable state is reasonably 
appropriate here 

–  We really do want the “callbacks registered” and “events that 
have been delivered” to change due to function calls 

In "pure" functional programming, there is no mutation. 
–  Therefore, it is guaranteed that calling a function with 

certain arguments will always return the same value, no 
matter how many times it's called. 

–  Not guaranteed once mutation is introduced. 
–  This is why global variables are considered "bad" in 

languages like C or C++ (global constants OK). 
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Mutable state: Example in C++ 

times_called = 0!
!
int function() {  
  times_called++;  
  return times_called;!
}!
 
This is useful, but can cause big problems if somebody else 
modifies times_called from elsewhere in the program. 
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Mutable state 
•  Scheme and Racket's variables are mutable. 
•  The name of any function which does mutation contains a "!" 
•  Mutate a variable with set!!

–  Only works after the variable has been placed into an 
environment with define, let, or as an argument to a function. 

–  set! does not return a value. 
  (define times-called 0)!
  (define (function)  
    (set! times-called (+ 1 times-called))  
    times-called)!
•  Notice that functions that have side-effects or use mutation are the 

only functions that need to have bodies with more than one 
expression in them. 
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Example call-back library 

Library maintains mutable state for “what callbacks are there” and 
provides a function for accepting new ones 

–  A real library would support removing them, etc. 
(define callbacks '()) 
(define (add-callback func)  
  (set! callbacks (cons func callbacks))) 
 
(define (key-press which-key) 
  (for-each  
    (lambda (func) (func which-key)) callbacks)) 
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Clients 
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(define (print-if-pressed key message) 
  (add-callback  
    (lambda (which-key)  
      (if (string=? key which-key)  
        (begin (display message) (newline)) #f)))) 
 
(define count-presses 0) 
(add-callback  
   (lambda (key)  
     (set! count-presses (+ 1 count-presses))  
     (display "total presses = ") 
     (display count-presses) 
     (newline))) 



Improvement on the client side 
•  Why clutter up the global environment with count-presses? 
•  We don't want some other function mucking with that variable. 
•  Let's hide it inside a let that only our callback can access. 
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(let ((count-presses 0)) 
  (add-callback  
   (lambda (key)  
     (set! count-presses (+ 1 count-presses))  
     (display "total presses = ") 
     (display count-presses) 
     (newline))) 



Implementing an ADT 

As our last pattern, closures can implement abstract data types 
–  They can share the same private data 
–  Private data can be mutable or immutable  
–  Feels quite a bit like objects, emphasizing that OOP and 

functional programming have similarities 
 

The actual code is advanced/clever/tricky, but has no new features 
–  Combines lexical scope, closures, and higher-level functions 
–  Client use is not so tricky 
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(define (new-stack)!
  (let ((the-stack '()))!
    (define (dispatch method-name)!
      (cond ((eq? method-name 'empty?) empty?)!
            ((eq? method-name 'push) push)!
            ((eq? method-name 'pop) pop)!
            (#t (error "Bad method name"))))!
    (define (empty?) (null? the-stack))!
    (define (push item) (set! the-stack (cons item the-stack)))!
    (define (pop) !
      (if (null? the-stack) (error "Can't pop an empty stack")!
          (let ((top-item (car the-stack)))!
            (set! the-stack (cdr the-stack))!
            top-item)))!
    dispatch))    ; this last line is the return value  
                  ; of the let statement at the top.!
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