
Programming Languages

Function-Closure Idioms

Adapted from Dan Grossman's PL class,
U. of Washington

More idioms

•  We know the rule for lexical scope and function closures
–  Now what is it good for

A partial but wide-ranging list:

•  Pass functions with private data to iterators (map/filter): Done

•  Combine functions (e.g., composition)

•  Currying (multi-arg functions and partial application)

•  Callbacks (e.g., in reactive programming)

•  Implementing an ADT with a record of functions

Spring 2013 2 Programming Languages

Combine functions

Canonical example is function composition:

•  Creates a closure that “remembers” what f and g are bound to
•  This function is built-in to Racket; but this definition is basically

how it works.
•  3rd version is the best (clearest as to what it does):

Spring 2013 3 Programming Languages

(define (compose f g) (lambda (x) (f (g x))))

(define (sqrt-of-abs i) (sqrt (abs i)))
(define (sqrt-of-abs i) ((compose sqrt abs) i))
(define sqrt-of-abs (compose sqrt abs))

Currying and Partial Application
•  Currying is the idea of calling a function with an incomplete set

of arguments.
•  When you "curry" a function, you get a function back that

accepts the remaining arguments.
•  Named after Haskell Curry, who studied related ideas in logic.
•  Useful in situations where you want to call/pass a function, but

you don't know the values for all the arguments yet.
–  Ex: a function of two arguments, but coming from two

separate places (scopes) in your program.

Spring 2013 6 Programming Languages

Motivation example

•  We want to write code that takes a list of numbers and returns a
list of the number 4 raised to the power of each number.
–  in: (x1 x2 … xn)!
–  out: (4^x1 4^x2 … 4^xn)!

•  We could use a lambda expression:
–  (map (lambda (x) (expt 4 x)) lst)!

•  But this can get tedious to do over and over.
•  What if the expt function were defined differently?

Spring 2013 7 Programming Languages

Currying and Partial Application

•  We know (expt x y) raises x to the y'th power.
•  We could define a different version of expt like this:
•  (define (expt-curried x)  

 (lambda (y) (expt x y))!
•  We can call this function like this:

 ((expt-curried 4) 2)!
•  This is an incredibly flexible definition:

–  We can call with two arguments as normal (with extra parens)
–  Or call with one argument to get a function that accepts the

remaining argument.
•  This is critical in some other functional languages (albeit, not Racket

or Scheme) where functions may have at most one argument.

Spring 2013 8 Programming Languages

Currying and Partial Application

•  Currying is still useful in Racket with the curry function:
–  Turns a function (f x1 x2 x3 … xn)  

into a function ((((f x1) x2) x3) … xn)!
–  curry takes a function f and some optional arguments
–  Returns a function that accumulates remaining arguments until
f can be called (all arguments are present).

•  (curry expt 4) == (expt-curried 4)!
•  ((curry expt 4) 2) == ((expt-curried 4) 2)!
•  These can be useful in definitions themselves:

–  (define (double x) (* 2 x))!
–  (define double (curry * 2))!

Spring 2013 9 Programming Languages

Currying and Partial Application
•  Currying is also useful to shorten longish lambda expressions:
•  Old way: (map (lambda (x) (+ x 1)) '(1 2 3))!
•  New way: (map (curry + 1) '(1 2 3))  

!
•  Great for encapsulating private data: list-ref is the built-in get-nth.

(define get-month  
 (curry list-ref '(Jan Feb Mar Apr May Jun  
 Jul Aug Sep Oct Nov Dec)))  
!

•  This example introduces a new datatype: symbol.
–  Symbols are similar to strings, except they don't have quotes

around them (and you can't take them apart or add them
together like strings).

Spring 2013 10 Programming Languages

Currying and Partial Application
•  But this gives zero-based months:
•  (define get-month  

 (curry list-ref !
 '(Jan Feb Mar Apr May Jun  
 Jul Aug Sep Oct Nov Dec)))  
!
•  Let's subtract one from the argument first:

(define get-month  
 (compose  
 (curry list-ref !

 '(Jan Feb Mar Apr May Jun  
 Jul Aug Sep Oct Nov Dec))  
 (curryr - 1)))

Spring 2013 11 Programming Languages

curryr curries
from right to
left, rather than
left to right.

Currying and Partial Application
•  Another example:
(define (eval-polynomial coeff x)!
 (if (null? coeff) 0!
 (+ (* (car coeff) (expt x (- (length coeff) 1)))  
 (eval-polynomial (cdr coeff) x))))!
!
(define (make-polynomial coeff) !
 (lambda (x) (eval-polynomial coeff x))  
 
(define make-polynomial (curry eval-polynomial))!

Spring 2013 12 Programming Languages

Currying and Partial Application
•  A few more examples:

•  (map (compose (curry + 2) (curry * 4)) '(1 2 3))!
–  quadruples then adds two to the list '(1 2 3)

•  (filter (curry < 10) '(6 8 10 12))!
–  Careful! curry works from the left, so (curry < 10) is

equivalent to (lambda (x) (< 10 x)) so this filter keeps
numbers that are greater than 10.

•  Probably clearer to do:
 (filter (curryr > 10) '(6 8 10 12))!

•  (In this case, the confusion is because we are used to "<" being an
infix operator).

Spring 2013 13 Programming Languages

Return to the foldr J
Currying becomes really powerful when you curry higher-order
functions.

Recall (foldr f init (x1 x2 … xn)) returns
 (f x1 (f x2 … (f xn-2 (f xn-1 (f xn init))!

Spring 2013 16 Programming Languages

(define (sum-list-ok lst) (foldr + 0 lst))

(define sum-list-super-cool (curry foldr + 0)

Another example

•  Scheme and Racket have andmap and ormap.
•  (andmap f (x1 x2…)) returns (and (f x1) (f x2) …)!
•  (ormap f (x1 x2…)) returns (or (f x1) (f x2) …)!

Spring 2013 17 Programming Languages

(andmap (curryr > 7) '(8 9 10)) è #t
(ormap (curryr > 7) '(4 5 6 7 8)) è #t
(ormap (curryr > 7) '(4 5 6)) è #f

(define contains7 (curry ormap (curry = 7)))
(define all-are7 (curry andmap (curry = 7)))

Another example
Currying and partial application can be convenient even without higher-
order functions.
 Note: (range a b) returns a list of integers from a to b-1, inclusive.

Spring 2013 18 Programming Languages

(define (zip lst1 lst2)
 (if (null? lst1) '()
 (cons (list (car lst1) (car lst2))
 (zip (cdr lst1) (cdr lst2)))))

(define countup (curry range 1))

(define (add-numbers lst)
 (zip (countup (length lst)) lst))

When to use currying
•  When you write a lambda function of the form

–  (lambda (y1 y2 …) (f x1 x2 … y1 y2…))
•  You can replace that with

–  (curry f x1 x2 …)

•  Similarly, replace
–  (lambda (y1 y2 …) (f y1 y2 … x1 x2…))

•  with
–  (curryr f x1 x2 …)

Spring 2013 19 Programming Languages

When to use currying
•  Try these:

–  Assuming lst is a list of numbers, write a call to filter
that keeps all numbers greater than 4.

–  Assuming lst is a list of lists of numbers, write a call to
map that adds a 1 to the front of each sublist.

–  Assuming lst is a list of numbers, write a call to map that
turns each number (in lst) into the list (1 number).

–  Assuming lst is a list of numbers, write a call to map that
squares each number (you should curry expt).

–  Define a function dist-from-origin in terms of currying a
function (dist x1 y1 x2 y2) [assume dist is already
defined elsewhere]

Spring 2013 20 Programming Languages

Callbacks

A common idiom: Library takes functions to apply later, when an
event occurs – examples:

–  When a key is pressed, mouse moves, data arrives
–  When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
–  Different callbacks may need different private data with

different types
–  (Can accomplish this in C++ with objects that contain private

fields.)

Spring 2013 24 Programming Languages

Mutable state

While it’s not absolutely necessary, mutable state is reasonably
appropriate here

–  We really do want the “callbacks registered” and “events that
have been delivered” to change due to function calls

In "pure" functional programming, there is no mutation.
–  Therefore, it is guaranteed that calling a function with

certain arguments will always return the same value, no
matter how many times it's called.

–  Not guaranteed once mutation is introduced.
–  This is why global variables are considered "bad" in

languages like C or C++ (global constants OK).

Spring 2013 25 Programming Languages

Mutable state: Example in C++

times_called = 0!
!
int function() {  
 times_called++;  
 return times_called;!
}!

This is useful, but can cause big problems if somebody else
modifies times_called from elsewhere in the program.

Spring 2013 26 Programming Languages

Mutable state
•  Scheme and Racket's variables are mutable.
•  The name of any function which does mutation contains a "!"
•  Mutate a variable with set!!

–  Only works after the variable has been placed into an
environment with define, let, or as an argument to a function.

–  set! does not return a value.
 (define times-called 0)!
 (define (function)  
 (set! times-called (+ 1 times-called))  
 times-called)!
•  Notice that functions that have side-effects or use mutation are the

only functions that need to have bodies with more than one
expression in them.

Spring 2013 27 Programming Languages

Example call-back library

Library maintains mutable state for “what callbacks are there” and
provides a function for accepting new ones

–  A real library would support removing them, etc.
(define callbacks '())
(define (add-callback func)
 (set! callbacks (cons func callbacks)))

(define (key-press which-key)
 (for-each
 (lambda (func) (func which-key)) callbacks))

Spring 2013 29 Programming Languages

Clients

Spring 2013 31 Programming Languages

(define (print-if-pressed key message)
 (add-callback
 (lambda (which-key)
 (if (string=? key which-key)
 (begin (display message) (newline)) #f))))

(define count-presses 0)
(add-callback
 (lambda (key)
 (set! count-presses (+ 1 count-presses))
 (display "total presses = ")
 (display count-presses)
 (newline)))

Improvement on the client side
•  Why clutter up the global environment with count-presses?
•  We don't want some other function mucking with that variable.
•  Let's hide it inside a let that only our callback can access.

Spring 2013 32 Programming Languages

(let ((count-presses 0))
 (add-callback
 (lambda (key)
 (set! count-presses (+ 1 count-presses))
 (display "total presses = ")
 (display count-presses)
 (newline)))

Implementing an ADT

As our last pattern, closures can implement abstract data types
–  They can share the same private data
–  Private data can be mutable or immutable
–  Feels quite a bit like objects, emphasizing that OOP and

functional programming have similarities

The actual code is advanced/clever/tricky, but has no new features
–  Combines lexical scope, closures, and higher-level functions
–  Client use is not so tricky

Spring 2013 33 Programming Languages

(define (new-stack)!
 (let ((the-stack '()))!
 (define (dispatch method-name)!
 (cond ((eq? method-name 'empty?) empty?)!
 ((eq? method-name 'push) push)!
 ((eq? method-name 'pop) pop)!
 (#t (error "Bad method name"))))!
 (define (empty?) (null? the-stack))!
 (define (push item) (set! the-stack (cons item the-stack)))!
 (define (pop) !
 (if (null? the-stack) (error "Can't pop an empty stack")!
 (let ((top-item (car the-stack)))!
 (set! the-stack (cdr the-stack))!
 top-item)))!
 dispatch)) ; this last line is the return value  
 ; of the let statement at the top.!

Spring 2013 34 Programming Languages

