
COMP 360, Spring 2013, Assignment 5

In this assignment, you will explore some fun and exciting Java classes and ways of using them. You
will write a program to manage the reservations for a performance at a theater (a la Ticketmaster).
To keep things simple, there is only one performance, and the theater has a single row of seats that
are numbered with increasing integers starting from zero.

Read this entire document before you start working so you can get a feel for how the
classes fit together.

Getting Started

Make a new NetBeans project. Go to my public folder and copy the three Java files from the
“cs360hw5” directory into your NetBean project’s “src” directory. The files should then appear in
NetBeans.

Classes to Edit

• The Reservation class manages a single reservation in the theater. A reservation should
store the name of the person who made the reservation, as well as what seats in the theater
are reserved for that person. Each reservation’s seats are always consecutive.

Decide how you will represent the information a Reservation has to know about and add
appropriate private fields to the class to hold the information (see below for suggestions).

Add the following methods to the Reservation class:

– public Reservation(String name, int startSeat, int howMany): Constructor. Cre-
ates a new Reservation for the person with the given name, starting in the seat specified,
and containing “howMany” consecutive seats.

– public String getName(): Returns the name of the person who made this reservation.

– public int getFirstSeat(): Returns the first seat number in the reservation.

– public int getLastSeat(): Returns the last seat number in the reservation.

– public int getNumberOfSeats(): Returns the number of seats in the reservation.

– public String toString(): Returns a textual representation of this reservation. In-
clude the name of the reservation, the starting seat, and the ending seat.

Implementation suggestions: This class should not be particularly complicated. You need
three fields: a String and two integers.

• The Theater class manages reservations for the performance. You should decide what data
structure to use to store the reservations.

Add the following methods to the Theater class:

– public Theater(int size): Constructor. Creates a new Theater with the number of
seats specified. The seats are labeled 0 to size−1.

1



– public Reservation makeReservation(String personName, int howManySeats): At-
tempts to reserve a block of “howManySeats” consecutive seats for the person specified.
If the theater has a block of empty seats of the appropriate size, a new Reservation

object is created and returned. If there are no blocks of seats available that are large
enough to accommodate this request, this method returns null.

A person cannot request specific seats; seats are allocated starting at seat 0 and increas-
ing from there. Within a reservation, all the seats must be next to each other; that
is, if a person asks for four seats, you should allocate them the first available group of
four consecutive seats. So if the theater has ten seats and all are available, a person
requesting four seats would be allocated seats 0–3. The next person requesting four
seats would be given seats 4–7. The next person requesting four seats would be denied
a reservation.

You may assume that no person will ever make more than a single reservation (all the
names in the reservations will be unique).

– public boolean cancelReservation(String personName): Removes the reservation
for this person from the theater and returns true. If the person specified has no reser-
vation, this request is ignored and the method returns false.

– public Reservation lookupReservation(String personName): Returns the reser-
vation for this person, assuming there is one. If there is not, returns null.

Implementation suggestions: There are lots of ways to store the reservations. You need a
technique that enables two things: (1) fast lookup by name, and (2) a fast way to know what
seats are available and which are not (so you can quickly find blocks of empty seats).

• You do not need to make any changes to the Ticketmaster class. This class holds the main

method for the project, as well as additional code to read commands from the keyboard and
process them. You should take a look at the code and make sure you understand how it
works, but you shouldn’t need to change anything here.

The code should compile and run “out of the box,” even without changes on your part. Many
of the methods return placeholder values (like null or false) that you can remove when you
start implementing those methods.

2



Sample Run

Enter theater size: 20

Enter command: reserve kirlin 6

Made reservation: [Reservation for kirlin: seats 0 through 5]

Theater now looks like: [xxxxxx--------------]

Enter command: reserve sanders 4

Made reservation: [Reservation for sanders: seats 6 through 9]

Theater now looks like: [xxxxxxxxxx----------]

Enter command: cancel kirlin

Reservation canceled.

Theater now looks like: [------xxxx----------]

Enter command: reserve seaton 3

Made reservation: [Reservation for seaton: seats 0 through 2]

Theater now looks like: [xxx---xxxx----------]

Enter command: reserve mouron 12

Could not make reservation.

Enter command: reserve gottlieb 7

Made reservation: [Reservation for gottlieb: seats 10 through 16]

Theater now looks like: [xxx---xxxxxxxxxxx---]

Enter command: lookup sanders

[Reservation for sanders: seats 6 through 9]

Enter command: cancel sanders

Reservation canceled.

Theater now looks like: [xxx-------xxxxxxx---]

Enter command: reserve mouron 12

Could not make reservation.

Enter command: cancel gottlieb

Reservation canceled.

Theater now looks like: [xxx-----------------]

Enter command: reserve mouron 12

Made reservation: [Reservation for mouron: seats 3 through 14]

Theater now looks like: [xxxxxxxxxxxxxxx-----]

Enter command: end

3



Assessment

Solutions should be:

• Correct

• In good style, including indentation and line breaks

• Written using features discussed in class.

Turn-in Instructions

• Upload Ticketmaster.java, Theater.java, and Reservation.java to Moodle before the
project deadline.

4


