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Topological combinatorics



What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:
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What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:

(1) Start with a set of vertices.
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What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:

(2) Add edges between some pairs of vertices.
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What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:

(3) Add triangles between some triples of vertices.
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What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:

(4) Add tetrahedrons…
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What is combinatorics?

Definition
An (abstract) simplicial complex on a set S is a collection of
subsets of S , such that if a subset f is in the collection, then
all of f ’s subsets are also in the collection.

1 2

3 4

S is {1, 2, 3, 4}.

vertices: {1}, {2}, {3}, {4}
edges: {1, 2}, {1, 3}, {2, 3}
triangles: {1, 2, 3}

The simplicial complex consists of a finite amount of
information–just the sets listed to the right.
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What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: Simplicial complexes.
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What is combinatorics?

Combinatorics is the field of mathematics concerned with
problems of counting, existence, construction, and
optimization, within a finite or discrete system.

Example: Count the simplicial complexes on {1, 2, 3}.
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What is topology?

Topology is the field of mathematics concerned with
“geometric” spaces and continuous functions between them.

Example: The Borsuk-Ulam theorem in one dimension:

S1 R

−1 0 1 2 3 4

For any continuous function f : S1 → R, there exists a point
x ∈ S1 with f (−x) = f (x).
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What is topological combinatorics?

Topological combinatorics refers to the application of
topological concepts to combinatorial problems.

Usually traced back to Lovász’s 1978 proof of the Kneser
Conjecture via the Borsuk-Ulam theorem:

Theorem (Kneser Conjecture)
The Kneser graph K(n, k) has chromatic number n − 2k + 2 for
all integers n, k with n ≥ 2k.

Theorem (Borsuk-Ulam Theorem)
If f : Sn → Rn is continuous, then there exists x ∈ Sn with
f (−x) = f (x).
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What is topological combinatorics?

Topological combinatorics refers to the application of
topological concepts to combinatorial problems.

We expand this definition to include:

• Solving combinatorial problems that arise in topological
settings (chapter 2).

• Relating combinatorial structures to geometric ones
(chapters 3, 4, 5).

• Applying the Borsuk-Ulam Theorem to problems not
obviously about topology (chapter 6).
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Overview of dissertation



Chapter 2: Vertex numbers of simplicial complexes

Vertex numbers of simplicial complexes with free abelian
fundamental group

Joint work with Florian Frick.

To be submitted for publication.

Theorem
We have the following asymptotic results:

(a) There is a simplicial complex Xn with π1(Xn) ∼= Zn on
O(n) vertices.

(b) Every simplicial complex Xn with π1(Xn) ∼= Zn has Ω(n3/4)

vertices.
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Chapter 3: Simplicial complexes from projective planes

Small cyclic simplicial complexes with fundamental group Zn

from projective planes

To be submitted for publication.

The torus has a 7-vertex triangulation X , arising from the
following diagram:

1 2 3 4 5 6 7 1

4 5 6 7 1 2 3 4
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Chapter 3: Simplicial complexes from projective planes

The torus has a 7-vertex triangulation X , arising from the
following diagram:

1 2 3 4 5 6 7 1

4 5 6 7 1 2 3 4

• X has exactly 7 vertices.
• X contains two copies of the Fano plane PG(2,F2).
• X is cyclic.
• X is 2-neighborly.
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Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional
simplicial complex X with π1(X) ∼= Zq , such that:

• X has exactly q2 + q + 1 vertices.
• X contains two copies of PG(2,Fq).
• X is cyclic.
• X is 2-neighborly.

We prove a more general version, where PG(2,Fq) is replaced
by a “colored k-configuration.”

We show a correspondence between colored k-configurations,
Sidon sets, and linear codes.
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Chapter 4: Clean tangled clutters

Clean tangled clutters, simplices, and projective geometries

Joint work with Ahmad Abdi and Gérard Cornuéjols.

Submitted for publication.

Definition
Let V be a finite set. A clutter is a family C of subsets of V ,
such that no set in C contains any other set in C.

13



Chapter 4: Clean tangled clutters

Clean tangled clutters, simplices, and projective geometries

Joint work with Ahmad Abdi and Gérard Cornuéjols.

Submitted for publication.

Definition
Let V be a finite set. A clutter is a family C of subsets of V ,
such that no set in C contains any other set in C.

13



Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family C of subsets of V ,
such that no set in C contains any other set in C.

Definition
A clutter C is clean if no minor of C is a delta or the blocker of
an extended odd hole.

Definition
A clutter C is tangled if its covering number is two, and every
element appears in a minimum cover.

Every clean tangled clutter has a fractional packing of value 2.

The supports of all such packings of C form the core of C,
which has a simplified representation called the setcore.
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Chapter 4: Clean tangled clutters

Our results:

• The convex hull of the setcore of C is a full-dimensional
polytope P containing (1/2, . . . , 1/2) in its interior.

• P is a simplex iff the setcore of C is the cocycle space of a
projective geometry over F2.

• If P is a simplex of dimension more than 3, then C has the
Fano plane as a minor.
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Chapter 5: Ideal minimally non-packing clutters

A new infinite class of ideal minimally non-packing clutters

Joint work with Ahmad Abdi and Gérard Cornuéjols.

Discrete Mathematics (2021).

Definition
A clutter C is ideal if its set covering polyhedron is integral:

{x ∈ RV
+ :

∑
v∈C

xv ≥ 1, C ∈ C}
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Chapter 5: Ideal minimally non-packing clutters

Let C be a clutter.

The packing number ν(C) is the maximum number of pairwise
disjoint members.

The covering number τ(C) is the minimum number of
elements needed to intersect every member.

We always have ν(C) ≤ τ(C); C packs if ν(C) = τ(C).

Definition
A clutter C is minimally non-packing if C does not pack, but all
proper minors of C pack.
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Chapter 5: Ideal minimally non-packing clutters

Open conjectures:

Replication Conjecture (Conforti, Cornuéjols). A minimally
non-packing clutter cannot have replicated elements.

(implied by)

τ = 2 Conjecture (Cornuéjols, Guenin, Margot). Every ideal
minimally non-packing clutter C has τ(C) = 2.

We give a new infinite class of ideal minimally non-packing
clutters, each with τ(C) = 2.
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Chapter 6: A nonlinear Lazarev-Lieb theorem

A nonlinear Lazarev-Lieb theorem: L2-orthogonality via
motion planning

Joint work with Florian Frick.

Journal of Topology and Analysis (2021).

Theorem (Hobby, Rice; 1965)
Let f1, . . . , fn ∈ L1([0, 1];R). Then there exists h : [0, 1] → {±1}
with at most n sign changes, such that for all j ,∫ 1

0
fj(x)h(x)dx = 0.
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Chapter 6: A nonlinear Lazarev-Lieb theorem

In 2013, Lazarev and Lieb proved a smooth variant:

Theorem (Lazarev, Lieb; 2013; Rutherfoord; 2013)
Let f1, . . . , fn ∈ L1([0, 1];C). Then there exists h ∈ C∞([0, 1];S1)

with ‖h‖W 1,1 ≤ 1 + 5πn such that for all j ,∫ 1

0
fj(x)h(x)dx = 0.

Note: ‖h‖W 1,1 =
∫ 1

0 |h(x)|dx +
∫ 1

0 |h′(x)|dx .

Using Borsuk-Ulam, we improve the bound to 1 + 2πn.

Unlike previous proofs, ours does not rely on the linearity of
the integral, only the continuity.
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Vertex numbers of simplicial
complexes



Vertex numbers

A common question in topological combinatorics:

What is the minimum possible number of vertices in a
simplicial complex with a certain property?

How many vertices are required for a simplicial complex
homeomorphic to the torus T2? (A triangulation of T2)
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The vertex number of the n-torus

How many vertices are required for a triangulation of
Tn = (S1)n?

Theorem (Kühnel, Lassmann; 1988)
There is a triangulation of Tn on 2n+1 − 1 vertices.

Theorem (Arnoux, Marin; 1991)
Any triangulation of Tn has at least

(n
2
)
vertices.

22
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The vertex number of fundamental group Zn .

Our question: How many vertices are required for a simplicial
complex X with π1(X) ∼= Zn?

A related result:

Theorem (Kalai; 1983; Newman; 2018)
The number Td(G) of vertices required for a simplicial complex
X with torsion part of Hd−1(X) isomorphic to G satisfies:

cd(log |G|)1/d ≤ Td(G) ≤ Cd(log |G|)1/d
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The fundamental group π1(X ; x0)

Given: a topological space X and a point x0 ∈ X .

A loop at x0 is a map γ : [0, 1] → X with γ(0) = γ(1) = x0.

A homotopy between loops γ0, γ1 at x0 is a map δ : [0, 1]2 → X :

x0

x0

γ0 γ1

δ(0, t) = γ0(t)
δ(1, t) = γ1(t)
δ(s, 0) = x0

δ(s, 1) = x0

The elements of π1(X ; x0) are loops up to homotopy.

The group operation is concatenation.

24



The fundamental group: an example

Example: π1(S1) ∼= Z.

x0

Two loops at x0 have a homotopy between them iff they travel
around the circle the same number of times.

Similarly, π1(Tn) ∼= Zn .

(We omit the basepoint because π1(S1; x0) is independent of
x0, since S1 is path-connected.)
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The fundamental group of a simplicial complex

Any simplicial complex X on k vertices {v1, . . . , vk} has a
geometric realization |X | in Rk :

|X | =

{
~x ∈ Rk : xi ≥ 0,

∑
i

xi = 1, supp(~x) ∈ X

}

supp(~x) = {i ∈ [k] : xi > 0}

We define the fundamental group π1(X) as π1(|X |).
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Our results

Theorem
We have the following asymptotic results:

(a) There is a simplicial complex Xn with π1(Xn) ∼= Zn on
O(n) vertices.

(b) Every simplicial complex Xn with π1(Xn) ∼= Zn has Ω(n3/4)

vertices.

In (a), the exact number of vertices depends on parity:

For n = 2k, k 6= 2, 3, the complex Xn has 8k − 1 vertices.

For n = 2k − 1, k 6= 2, 3, the complex Xn has 8k − 3 vertices.
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Upper bound: Outline

Construct a complex Wn on n2 + n + 1 vertices with
π1(Wn) ∼= Zn .

Identify vertices and edges without changing π1(Wn).
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The simplicial complex Wn

Vertices: u,

vi , v̄i (i ∈ [n]), wi,j , w̄i,j (i, j ∈ [n], i < j).

Edges: {u, vi}, {vi , v̄i}, {v̄i , u}.

Add additional edges and triangles as follows:

u

u

u

u

vj

v̄j

vj

v̄j

vi v̄i

vi v̄i

wi,j

w̄i,j

Wn has 1 + 2n + 2
(n

2
)
= n2 + n + 1 vertices, and π1(Wn) ∼= Zn .
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Upper bound: Identifying vertices in Wn

u

u

u

u

v2

v̄2

v2

v̄2

v1 v̄1

v1 v̄1

w1,2

w̄1,2

u

u

u

u

v4

v̄4

v4

v̄4

v3 v̄3

v3 v̄3

w3,4

w̄3,4

Identify vertices w1,2,w3,4, identify edges {u,w1,2}, {u,w3,4}.

 

w1,2 w3,4

u

w1,2 ∼ w3,4

u

Use the fact that w1,2,w3,4 have no common neighbors.
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Upper bound: Identifying many vertices in Wn .

We can similarly identify w1,2,w3,4,w5,6 to a single vertex.

In general, if M is a matching of the complete graph Kn on
vertex set [n], then we can identify

{wi,j : {i, j} ∈ M}.

A 1-factorization of Kn is a partition of the edges of Kn into
perfect matchings. (Exists for all n even.)

Take a 1-factorization F of Kn , identify the wi,j corresponding
to each M ∈ F .

Take a 1-factorization F̄ of Kn , identify the w̄i,j corresponding
to each M ∈ F̄ .
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We can similarly identify w1,2,w3,4,w5,6 to a single vertex.
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Upper bound: Identifying many vertices in Wn .

Any two edges {i, j}, {i ′, j ′} of Kn cannot appear together in
matchings in both F and F̄ .

Such a pair F , F̄ is said to be orthogonal.

Theorem (Horton; 1981)
An orthogonal pair of 1-factorizations of Kn exists for all
n = 2k, k 6= 2, 3.

For n = 2k, k 6= 2, 3, we obtain Xn with π1(Xn) = Zn , and Xn

has 1 + 4k + 2(2k − 1) = 8k − 1 vertices.

For n = 2k − 1, a similar result follows by adding a dummy
vertex to Kn , and proceeding as in the n = 2k case.
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Lower bound: Outline

Connection with group presentations

Ω(n2/3) lower bound by deficiency.

Ω(n3/4) lower bound by Sylvester-Gallai.
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Lower bound: Connection with group presentations

Lemma
If X is a simplicial complex on k vertices with π1(X) ∼= G, then
there exists a presentation 〈S |R〉 ∼= G with |S | ≤

(k
2
)
and

|R| ≤
(k

3
)
.

Outline.
Consider a spanning tree T of X .

Each edge of X not in T corresponds to a generator of π1(X).

Each triangle of X corresponds to a relation of the form g, gh,
or ghi of π1(X). (Each generator may be inverted.)
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Lower bound: 3-presentations

A 3-presentation is a group presentation 〈S |R〉 where each
relation of R is of one of the following forms:

• 〈〉 (the empty word)
• ga (g ∈ S , a ∈ Z)
• gahb (g, h ∈ S , a, b ∈ Z)
• gahbic (g, h, i ∈ S , a, b, c ∈ Z)

Lemma
If X is a simplicial complex on k vertices with π1(X) ∼= G, then
there exists a 3-presentation 〈S |R〉 ∼= G with |S | ≤

(k
2
)
and

|R| ≤
(k

3
)
.
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Lower bound: Deficiency of group presentations

The deficiency of a group presentation 〈S |R〉 is |S | − |R|.

The deficiency of a group is the maximum deficiency of any of
its presentations.

Theorem (Epstein; 1961)

def G ≤ rank H1(G,Z)−min # of generators for H2(G,Z)

We have def Zn = n −
(n

2
)
.

For example, 〈g1, . . . , gn|gigjg−1
i g−1

j , i < j〉 ∼= Zn .
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Lower bound: Ω(n2/3) by deficiency

Let X be a simplicial complex on k vertices with π1(X) ∼= Zn .

Obtain 〈S |R〉 ∼= Zn with |R| ≤
(k

3
)
.

But |R| ≥ |R| − |S | ≥
(n

2
)
− n.

So
(k

3
)
≥

(n
2
)
− n.

So k = Ω(n2/3).
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Lower bound: Ω(n3/4) by Sylvester-Gallai

Claim: Any 3-presentation 〈S |R〉 ∼= Zn has |S | = Ω(n3/2).

This implies our Ω(n3/4) bound:

Let X be a simplicial complex on k vertices with π1(X) ∼= Zn .

Obtain a 3-presentation 〈S |R〉 ∼= Zn with |S | ≤
(k

2
)
.

But |S | = Ω(n3/2).

So
(k

2
)
= Ω(n3/2).

So k = Ω(n3/4).
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Lower bound: Sylvester-Gallai theorems

Theorem (Sylvester, Melchior, Gallai; 1940)
Let S be a set of points in Rd , such that for any distinct
x, y ∈ S , there exists a third point z ∈ S with x, y, z collinear.

Then all points in S lie on a single line.

Theorem (Dvir, Saraf, Widgerson; 2014)
Let S be a set of n points in Rd , such that for any x ∈ S , for at
least δ(n − 1) of the remaining points y ∈ S , there exists a
third point z ∈ S with x, y, z collinear.

Then all points in S lie in an affine subspace of dimension at
most 12/δ.
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Lower bound: Our Sylvester-Gallai variant

Let V ⊆ Rn be a finite set of points, and let E be a finite set of
(not necessarily distinct) triples {u, v,w} of distinct points
u, v,w ∈ V lying in a common 2-dimensional subspace of Rd ,
so that (V ,E) forms a 3-uniform hypergraph.

Suppose that for each induced subhypergraph (V ′,E ′) of
(V ,E) with dim(span V ′) ≤ 2, we have |E ′| ≤ |V ′| − 1.

Then for λ > 0, there exists an induced subhypergraph (V ′,E ′)

of (V ,E) with |E | − |E ′| < λ|V |, and

dim(span V ′) ≤ 12|V |/λ.

(V corresponds to S , E corresponds to R; take λ = 24|S |/n.)
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Lower bound: Proof outline

Claim: Any 3-presentation 〈S |R〉 ∼= Zn has |S | = Ω(n3/2).

Apply Sylvester-Gallai to R to get S ′ ⊆ S :

• All but at most 24|S |2/n relations in R use only generators
in the subset S ′.

• dimS ′ ≤ n/2.

Collapse S ′ to get a presentation of Zk , with at most 24|S |2/n
relations, k ≥ n/2.

So 24|S |2/n = Ω(n2).

So |S | = Ω(n3/2).
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Our results

Theorem
We have the following asymptotic results:

(a) There is a simplicial complex Xn with π1(Xn) ∼= Zn on
O(n) vertices.

(b) Every simplicial complex Xn with π1(Xn) ∼= Zn has Ω(n3/4)

vertices.

In (a), the exact number of vertices depends on parity:

For n = 2k, k 6= 2, 3, the complex Xn has 8k − 1 vertices.

For n = 2k − 1, k 6= 2, 3, the complex Xn has 8k − 3 vertices.
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Further research

Can our results be extended from Zn to (Zk)
n for fixed k?

Does a 3-presentation 〈S |R〉 ∼= Zn require |S | = Ω(n2)?

Does a simplicial complex K with π1(K) ∼= Zn require Ω(n)
vertices?
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Questions

Questions?

44


	Topological combinatorics
	Overview of dissertation
	Vertex numbers of simplicial complexes

