Topics in topological combinatorics

Simplicial complexes, finite geometries, and the topology of circle-valued maps

Matt Superdock
July 30, 2021
Ph.D. Thesis Defense
Carnegie Mellon University
Department of Mathematical Sciences
Program in Algorithms, Combinatorics, and Optimization

Thesis committee

I'd like to start by recognizing my thesis committee:

- Dr. Florian Frick (chair)
- Dr. Boris Bukh
- Dr. Gérard Cornuéjols
- Dr. Matthew Kahle (Ohio State University)

Outline

Topological combinatorics

Overview of dissertation

Vertex numbers of simplicial complexes

Topological combinatorics

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:
(1) Start with a set of vertices.

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:
(2) Add edges between some pairs of vertices.

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:
(3) Add triangles between some triples of vertices.

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: A simplicial complex is constructed as follows:
(4) Add tetrahedrons...

What is combinatorics?

Definition
An (abstract) simplicial complex on a set S is a collection of subsets of S, such that if a subset f is in the collection, then all of f 's subsets are also in the collection.

What is combinatorics?

Definition
An (abstract) simplicial complex on a set S is a collection of subsets of S, such that if a subset f is in the collection, then all of f 's subsets are also in the collection.

$$
S \text { is }\{1,2,3,4\} .
$$

What is combinatorics?

Definition

An (abstract) simplicial complex on a set S is a collection of subsets of S, such that if a subset f is in the collection, then all of f 's subsets are also in the collection.

S is $\{1,2,3,4\}$.
vertices: $\{1\},\{2\},\{3\},\{4\}$

What is combinatorics?

Definition

An (abstract) simplicial complex on a set S is a collection of subsets of S, such that if a subset f is in the collection, then all of f 's subsets are also in the collection.

$$
\begin{aligned}
& S \text { is }\{1,2,3,4\} . \\
& \text { vertices: }\{1\},\{2\},\{3\},\{4\} \\
& \text { edges: }\{1,2\},\{1,3\},\{2,3\}
\end{aligned}
$$

What is combinatorics?

Definition

An (abstract) simplicial complex on a set S is a collection of subsets of S, such that if a subset f is in the collection, then all of f 's subsets are also in the collection.

$$
\begin{aligned}
& S \text { is }\{1,2,3,4\} \text {. } \\
& \text { vertices: }\{1\},\{2\},\{3\},\{4\} \\
& \text { edges: }\{1,2\},\{1,3\},\{2,3\} \\
& \text { triangles: }\{1,2,3\}
\end{aligned}
$$

What is combinatorics?

Definition

An (abstract) simplicial complex on a set S is a collection of subsets of S, such that if a subset f is in the collection, then all of f 's subsets are also in the collection.

$$
\begin{aligned}
& S \text { is }\{1,2,3,4\} \text {. } \\
& \text { vertices: }\{1\},\{2\},\{3\},\{4\} \\
& \text { edges: }\{1,2\},\{1,3\},\{2,3\} \\
& \text { triangles: }\{1,2,3\}
\end{aligned}
$$

The simplicial complex consists of a finite amount of information-just the sets listed to the right.

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: Simplicial complexes.

What is combinatorics?

Combinatorics is the field of mathematics concerned with problems of counting, existence, construction, and optimization, within a finite or discrete system.

Example: Count the simplicial complexes on $\{1,2,3\}$.

What is topology?

Topology is the field of mathematics concerned with "geometric" spaces and continuous functions between them.

What is topology?

Topology is the field of mathematics concerned with "geometric" spaces and continuous functions between them.

Example: The Borsuk-Ulam theorem in one dimension:

\mathbb{R}

For any continuous function $f: S^{1} \rightarrow \mathbb{R}$, there exists a point $x \in S^{1}$ with $f(-x)=f(x)$.

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

Usually traced back to Lovász's 1978 proof of the Kneser Conjecture via the Borsuk-Ulam theorem:

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

Usually traced back to Lovász's 1978 proof of the Kneser Conjecture via the Borsuk-Ulam theorem:

Theorem (Kneser Conjecture)
The Kneser graph $K(n, k)$ has chromatic number $n-2 k+2$ for all integers n, k with $n \geq 2 k$.

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

Usually traced back to Lovász's 1978 proof of the Kneser Conjecture via the Borsuk-Ulam theorem:

Theorem (Kneser Conjecture)
The Kneser graph $K(n, k)$ has chromatic number $n-2 k+2$ for all integers n, k with $n \geq 2 k$.

Theorem (Borsuk-Ulam Theorem)
If $f: S^{n} \rightarrow \mathbb{R}^{n}$ is continuous, then there exists $x \in S^{n}$ with $f(-x)=f(x)$.

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

We expand this definition to include:

- Solving combinatorial problems that arise in topological settings (chapter 2).

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

We expand this definition to include:

- Solving combinatorial problems that arise in topological settings (chapter 2).
- Relating combinatorial structures to geometric ones (chapters 3, 4, 5).

What is topological combinatorics?

Topological combinatorics refers to the application of topological concepts to combinatorial problems.

We expand this definition to include:

- Solving combinatorial problems that arise in topological settings (chapter 2).
- Relating combinatorial structures to geometric ones (chapters 3, 4, 5).
- Applying the Borsuk-Ulam Theorem to problems not obviously about topology (chapter 6).

Overview of dissertation

Chapter 2: Vertex numbers of simplicial complexes

Vertex numbers of simplicial complexes with free abelian fundamental group

Joint work with Florian Frick.
To be submitted for publication.

Chapter 2: Vertex numbers of simplicial complexes

Vertex numbers of simplicial complexes with free abelian fundamental group

Joint work with Florian Frick.
To be submitted for publication.
Theorem
We have the following asymptotic results:

Chapter 2: Vertex numbers of simplicial complexes

Vertex numbers of simplicial complexes with free abelian fundamental group

Joint work with Florian Frick.
To be submitted for publication.
Theorem
We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.

Chapter 2: Vertex numbers of simplicial complexes

Vertex numbers of simplicial complexes with free abelian fundamental group

Joint work with Florian Frick.
To be submitted for publication.
Theorem
We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

Chapter 3: Simplicial complexes from projective planes

Small cyclic simplicial complexes with fundamental group \mathbb{Z}^{n} from projective planes

To be submitted for publication.

Chapter 3: Simplicial complexes from projective planes

Small cyclic simplicial complexes with fundamental group \mathbb{Z}^{n} from projective planes

To be submitted for publication.

The torus has a 7 -vertex triangulation X, arising from the following diagram:

Chapter 3: Simplicial complexes from projective planes

The torus has a 7-vertex triangulation X, arising from the following diagram:

Chapter 3: Simplicial complexes from projective planes

The torus has a 7-vertex triangulation X, arising from the following diagram:

- X has exactly 7 vertices.

Chapter 3: Simplicial complexes from projective planes

The torus has a 7-vertex triangulation X, arising from the following diagram:

- X has exactly 7 vertices.
- X contains two copies of the Fano plane $P G\left(2, \mathbb{F}_{2}\right)$.

Chapter 3: Simplicial complexes from projective planes

The torus has a 7-vertex triangulation X, arising from the following diagram:

- X has exactly 7 vertices.
- X contains two copies of the Fano plane $P G\left(2, \mathbb{F}_{2}\right)$.
- X is cyclic.

Chapter 3: Simplicial complexes from projective planes

The torus has a 7-vertex triangulation X, arising from the following diagram:

- X has exactly 7 vertices.
- X contains two copies of the Fano plane $P G\left(2, \mathbb{F}_{2}\right)$.
- X is cyclic.
- X is 2-neighborly.

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

- X has exactly $q^{2}+q+1$ vertices.

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

- X has exactly $q^{2}+q+1$ vertices.
- X contains two copies of $P G\left(2, \mathbb{F}_{q}\right)$.

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

- X has exactly $q^{2}+q+1$ vertices.
- X contains two copies of $P G\left(2, \mathbb{F}_{q}\right)$.
- X is cyclic.

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

- X has exactly $q^{2}+q+1$ vertices.
- X contains two copies of $P G\left(2, \mathbb{F}_{q}\right)$.
- X is cyclic.
- X is 2-neighborly.

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

- X has exactly $q^{2}+q+1$ vertices.
- X contains two copies of $P G\left(2, \mathbb{F}_{q}\right)$.
- X is cyclic.
- X is 2-neighborly.

We prove a more general version, where $P G\left(2, \mathbb{F}_{q}\right)$ is replaced by a "colored k-configuration."

Chapter 3: Simplicial complexes from projective planes

Theorem
Let q be a prime power. Then there exists a q-dimensional simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{q}$, such that:

- X has exactly $q^{2}+q+1$ vertices.
- X contains two copies of $P G\left(2, \mathbb{F}_{q}\right)$.
- X is cyclic.
- X is 2-neighborly.

We prove a more general version, where $P G\left(2, \mathbb{F}_{q}\right)$ is replaced by a "colored k-configuration."

We show a correspondence between colored k-configurations, Sidon sets, and linear codes.

Chapter 4: Clean tangled clutters

Clean tangled clutters, simplices, and projective geometries Joint work with Ahmad Abdi and Gérard Cornuéjols.

Submitted for publication.

Chapter 4: Clean tangled clutters

Clean tangled clutters, simplices, and projective geometries Joint work with Ahmad Abdi and Gérard Cornuéjols.

Submitted for publication.

Definition

Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Definition
A clutter \mathcal{C} is clean if no minor of \mathcal{C} is a delta or the blocker of an extended odd hole.

Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Definition
A clutter \mathcal{C} is clean if no minor of \mathcal{C} is a delta or the blocker of an extended odd hole.

Definition
A clutter \mathcal{C} is tangled if its covering number is two, and every element appears in a minimum cover.

Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Definition
A clutter \mathcal{C} is clean if no minor of \mathcal{C} is a delta or the blocker of an extended odd hole.

Definition
A clutter \mathcal{C} is tangled if its covering number is two, and every element appears in a minimum cover.

Every clean tangled clutter has a fractional packing of value 2.

Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Definition
A clutter \mathcal{C} is clean if no minor of \mathcal{C} is a delta or the blocker of an extended odd hole.

Definition
A clutter \mathcal{C} is tangled if its covering number is two, and every element appears in a minimum cover.

Every clean tangled clutter has a fractional packing of value 2.
The supports of all such packings of \mathcal{C} form the core of \mathcal{C},

Chapter 4: Clean tangled clutters

Definition
Let V be a finite set. A clutter is a family \mathcal{C} of subsets of V, such that no set in \mathcal{C} contains any other set in \mathcal{C}.

Definition
A clutter \mathcal{C} is clean if no minor of \mathcal{C} is a delta or the blocker of an extended odd hole.

Definition

A clutter \mathcal{C} is tangled if its covering number is two, and every element appears in a minimum cover.

Every clean tangled clutter has a fractional packing of value 2.
The supports of all such packings of \mathcal{C} form the core of \mathcal{C}, which has a simplified representation called the setcore.

Chapter 4: Clean tangled clutters

Our results:

Chapter 4: Clean tangled clutters

Our results:

- The convex hull of the setcore of \mathcal{C} is a full-dimensional polytope P containing $(1 / 2, \ldots, 1 / 2)$ in its interior.

Chapter 4: Clean tangled clutters

Our results:

- The convex hull of the setcore of \mathcal{C} is a full-dimensional polytope P containing $(1 / 2, \ldots, 1 / 2)$ in its interior.
- P is a simplex iff the setcore of \mathcal{C} is the cocycle space of a projective geometry over \mathbb{F}_{2}.

Chapter 4: Clean tangled clutters

Our results:

- The convex hull of the setcore of \mathcal{C} is a full-dimensional polytope P containing $(1 / 2, \ldots, 1 / 2)$ in its interior.
- P is a simplex iff the setcore of \mathcal{C} is the cocycle space of a projective geometry over \mathbb{F}_{2}.
- If P is a simplex of dimension more than 3 , then \mathcal{C} has the Fano plane as a minor.

Chapter 5: Ideal minimally non-packing clutters

A new infinite class of ideal minimally non-packing clutters Joint work with Ahmad Abdi and Gérard Cornuéjols.

Discrete Mathematics (2021).

Chapter 5: Ideal minimally non-packing clutters

A new infinite class of ideal minimally non-packing clutters Joint work with Ahmad Abdi and Gérard Cornuéjols.

Discrete Mathematics (2021).

Definition

A clutter \mathcal{C} is ideal if its set covering polyhedron is integral:

$$
\left\{x \in \mathbb{R}_{+}^{V}: \sum_{v \in C} x_{v} \geq 1, C \in \mathcal{C}\right\}
$$

Chapter 5: Ideal minimally non-packing clutters

Let \mathcal{C} be a clutter.

Chapter 5: Ideal minimally non-packing clutters

Let \mathcal{C} be a clutter.
The packing number $\nu(\mathcal{C})$ is the maximum number of pairwise disjoint members.

Chapter 5: Ideal minimally non-packing clutters

Let \mathcal{C} be a clutter.
The packing number $\nu(\mathcal{C})$ is the maximum number of pairwise disjoint members.

The covering number $\tau(\mathcal{C})$ is the minimum number of elements needed to intersect every member.

Chapter 5: Ideal minimally non-packing clutters

Let \mathcal{C} be a clutter.
The packing number $\nu(\mathcal{C})$ is the maximum number of pairwise disjoint members.

The covering number $\tau(\mathcal{C})$ is the minimum number of elements needed to intersect every member.

We always have $\nu(\mathcal{C}) \leq \tau(\mathcal{C})$;

Chapter 5: Ideal minimally non-packing clutters

Let \mathcal{C} be a clutter.
The packing number $\nu(\mathcal{C})$ is the maximum number of pairwise disjoint members.

The covering number $\tau(\mathcal{C})$ is the minimum number of elements needed to intersect every member.

We always have $\nu(\mathcal{C}) \leq \tau(\mathcal{C}) ; \mathcal{C}$ packs if $\nu(\mathcal{C})=\tau(\mathcal{C})$.

Chapter 5: Ideal minimally non-packing clutters

Let \mathcal{C} be a clutter.
The packing number $\nu(\mathcal{C})$ is the maximum number of pairwise disjoint members.

The covering number $\tau(\mathcal{C})$ is the minimum number of elements needed to intersect every member.

We always have $\nu(\mathcal{C}) \leq \tau(\mathcal{C}) ; \mathcal{C}$ packs if $\nu(\mathcal{C})=\tau(\mathcal{C})$.
Definition
A clutter \mathcal{C} is minimally non-packing if \mathcal{C} does not pack, but all proper minors of \mathcal{C} pack.

Chapter 5: Ideal minimally non-packing clutters

Open conjectures:

Chapter 5: Ideal minimally non-packing clutters

Open conjectures:
Replication Conjecture (Conforti, Cornuéjols). A minimally non-packing clutter cannot have replicated elements.

Chapter 5: Ideal minimally non-packing clutters

Open conjectures:
Replication Conjecture (Conforti, Cornuéjols). A minimally non-packing clutter cannot have replicated elements.
(implied by)
$\tau=2$ Conjecture (Cornuéjols, Guenin, Margot). Every ideal minimally non-packing clutter \mathcal{C} has $\tau(\mathcal{C})=2$.

Chapter 5: Ideal minimally non-packing clutters

Open conjectures:
Replication Conjecture (Conforti, Cornuéjols). A minimally non-packing clutter cannot have replicated elements.
(implied by)
$\tau=2$ Conjecture (Cornuéjols, Guenin, Margot). Every ideal minimally non-packing clutter \mathcal{C} has $\tau(\mathcal{C})=2$.

We give a new infinite class of ideal minimally non-packing clutters,

Chapter 5: Ideal minimally non-packing clutters

Open conjectures:
Replication Conjecture (Conforti, Cornuéjols). A minimally non-packing clutter cannot have replicated elements.
(implied by)
$\tau=2$ Conjecture (Cornuéjols, Guenin, Margot). Every ideal minimally non-packing clutter \mathcal{C} has $\tau(\mathcal{C})=2$.

We give a new infinite class of ideal minimally non-packing clutters, each with $\tau(\mathcal{C})=2$.

Chapter 6: A nonlinear Lazarev-Lieb theorem

A nonlinear Lazarev-Lieb theorem: L^{2}-orthogonality via motion planning

Joint work with Florian Frick.
Journal of Topology and Analysis (2021).

Chapter 6: A nonlinear Lazarev-Lieb theorem

A nonlinear Lazarev-Lieb theorem: L^{2}-orthogonality via motion planning

Joint work with Florian Frick.
Journal of Topology and Analysis (2021).

Theorem (Hobby, Rice; 1965)
Let $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{R})$. Then there exists $h:[0,1] \rightarrow\{ \pm 1\}$
with at most n sign changes, such that for all j,

$$
\int_{0}^{1} f_{j}(x) h(x) d x=0
$$

Chapter 6: A nonlinear Lazarev-Lieb theorem

In 2013, Lazarev and Lieb proved a smooth variant:

Chapter 6: A nonlinear Lazarev-Lieb theorem

In 2013, Lazarev and Lieb proved a smooth variant:
Theorem (Lazarev, Lieb; 2013; Rutherfoord; 2013)
Let $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$. Then there exists $h \in C^{\infty}\left([0,1] ; S^{1}\right)$
with $\|h\|_{W^{1,1}} \leq 1+5 \pi n$ such that for all j,

$$
\int_{0}^{1} f_{j}(x) h(x) d x=0
$$

Chapter 6: A nonlinear Lazarev-Lieb theorem

In 2013, Lazarev and Lieb proved a smooth variant:
Theorem (Lazarev, Lieb; 2013; Rutherfoord; 2013)
Let $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$. Then there exists $h \in C^{\infty}\left([0,1] ; S^{1}\right)$
with $\|h\|_{W^{1,1}} \leq 1+5 \pi n$ such that for all j,

$$
\int_{0}^{1} f_{j}(x) h(x) d x=0
$$

Note: $\|h\|_{W^{1,1}}=\int_{0}^{1}|h(x)| d x+\int_{0}^{1}\left|h^{\prime}(x)\right| d x$.

Chapter 6: A nonlinear Lazarev-Lieb theorem

In 2013, Lazarev and Lieb proved a smooth variant:
Theorem (Lazarev, Lieb; 2013; Rutherfoord; 2013)
Let $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$. Then there exists $h \in C^{\infty}\left([0,1] ; S^{1}\right)$
with $\|h\|_{W^{1,1}} \leq 1+5 \pi n$ such that for all j,

$$
\int_{0}^{1} f_{j}(x) h(x) d x=0
$$

Note: $\|h\|_{W^{1,1}}=\int_{0}^{1}|h(x)| d x+\int_{0}^{1}\left|h^{\prime}(x)\right| d x$.
Using Borsuk-Ulam, we improve the bound to $1+2 \pi n$.

Chapter 6: A nonlinear Lazarev-Lieb theorem

In 2013, Lazarev and Lieb proved a smooth variant:
Theorem (Lazarev, Lieb; 2013; Rutherfoord; 2013)
Let $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$. Then there exists $h \in C^{\infty}\left([0,1] ; S^{1}\right)$
with $\|h\|_{W^{1,1}} \leq 1+5 \pi n$ such that for all j,

$$
\int_{0}^{1} f_{j}(x) h(x) d x=0
$$

Note: $\|h\|_{W^{1,1}}=\int_{0}^{1}|h(x)| d x+\int_{0}^{1}\left|h^{\prime}(x)\right| d x$.
Using Borsuk-Ulam, we improve the bound to $1+2 \pi n$.
Unlike previous proofs, ours does not rely on the linearity of the integral, only the continuity.

Vertex numbers of simplicial complexes

Vertex numbers

A common question in topological combinatorics:

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

Vertex numbers

A common question in topological combinatorics:
What is the minimum possible number of vertices in a simplicial complex with a certain property?

How many vertices are required for a simplicial complex homeomorphic to the torus T^{2} ? (A triangulation of T^{2})

The vertex number of the n-torus

How many vertices are required for a triangulation of $T^{n}=\left(S^{1}\right)^{n}$?

The vertex number of the n-torus

How many vertices are required for a triangulation of $T^{n}=\left(S^{1}\right)^{n}$?

Theorem (Kühnel, Lassmann; 1988)
There is a triangulation of T^{n} on $2^{n+1}-1$ vertices.

The vertex number of the n-torus

How many vertices are required for a triangulation of $T^{n}=\left(S^{1}\right)^{n}$?

Theorem (Kühnel, Lassmann; 1988)
There is a triangulation of T^{n} on $2^{n+1}-1$ vertices.
Theorem (Arnoux, Marin; 1991)
Any triangulation of T^{n} has at least $\binom{n}{2}$ vertices.

Our question: How many vertices are required for a simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{n}$?

The vertex number of fundamental group \mathbb{Z}^{n}.

Our question: How many vertices are required for a simplicial complex X with $\pi_{1}(X) \cong \mathbb{Z}^{n}$?

A related result:
Theorem (Kalai; 1983; Newman; 2018)
The number $T_{d}(G)$ of vertices required for a simplicial complex X with torsion part of $H_{d-1}(X)$ isomorphic to G satisfies:

$$
c_{d}(\log |G|)^{1 / d} \leq T_{d}(G) \leq C_{d}(\log |G|)^{1 / d}
$$

The fundamental group $\pi_{1}\left(X ; x_{0}\right)$

Given: a topological space X and a point $x_{0} \in X$.
A loop at x_{0} is a map $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)=x_{0}$.
A homotopy between loops γ_{0}, γ_{1} at x_{0} is a map $\delta:[0,1]^{2} \rightarrow X$:

The elements of $\pi_{1}\left(X ; x_{0}\right)$ are loops up to homotopy.
The group operation is concatenation.

The fundamental group: an example

Example: $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$.

Two loops at x_{0} have a homotopy between them iff they travel around the circle the same number of times.

The fundamental group: an example

Example: $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$.

Two loops at x_{0} have a homotopy between them iff they travel around the circle the same number of times.

Similarly, $\pi_{1}\left(T^{n}\right) \cong \mathbb{Z}^{n}$.

The fundamental group: an example

Example: $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$.

Two loops at x_{0} have a homotopy between them iff they travel around the circle the same number of times.

Similarly, $\pi_{1}\left(T^{n}\right) \cong \mathbb{Z}^{n}$.
(We omit the basepoint because $\pi_{1}\left(S^{1} ; x_{0}\right)$ is independent of x_{0}, since S^{1} is path-connected.)

The fundamental group of a simplicial complex

Any simplicial complex X on k vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ has a geometric realization $|X|$ in \mathbb{R}^{k} :

The fundamental group of a simplicial complex

Any simplicial complex X on k vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ has a geometric realization $|X|$ in \mathbb{R}^{k} :

$$
\begin{gathered}
|X|=\left\{\vec{x} \in \mathbb{R}^{k}: x_{i} \geq 0, \sum_{i} x_{i}=1, \operatorname{supp}(\vec{x}) \in X\right\} \\
\operatorname{supp}(\vec{x})=\left\{i \in[k]: x_{i}>0\right\}
\end{gathered}
$$

The fundamental group of a simplicial complex

Any simplicial complex X on k vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ has a geometric realization $|X|$ in \mathbb{R}^{k} :

$$
\begin{gathered}
|X|=\left\{\vec{x} \in \mathbb{R}^{k}: x_{i} \geq 0, \sum_{i} x_{i}=1, \operatorname{supp}(\vec{x}) \in X\right\} \\
\operatorname{supp}(\vec{x})=\left\{i \in[k]: x_{i}>0\right\}
\end{gathered}
$$

We define the fundamental group $\pi_{1}(X)$ as $\pi_{1}(|X|)$.

Our results

Theorem
We have the following asymptotic results:

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

In (a), the exact number of vertices depends on parity:

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

In (a), the exact number of vertices depends on parity:
For $n=2 k, k \neq 2,3$, the complex X_{n} has $8 k-1$ vertices.

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

In (a), the exact number of vertices depends on parity:
For $n=2 k, k \neq 2,3$, the complex X_{n} has $8 k-1$ vertices.
For $n=2 k-1, k \neq 2,3$, the complex X_{n} has $8 k-3$ vertices.

Upper bound: Outline

Construct a complex W_{n} on $n^{2}+n+1$ vertices with $\pi_{1}\left(W_{n}\right) \cong \mathbb{Z}^{n}$.

Upper bound: Outline

Construct a complex W_{n} on $n^{2}+n+1$ vertices with $\pi_{1}\left(W_{n}\right) \cong \mathbb{Z}^{n}$.

Identify vertices and edges without changing $\pi_{1}\left(W_{n}\right)$.

The simplicial complex W_{n}

Vertices: u,

The simplicial complex W_{n}
Vertices: $u, v_{i}, \bar{v}_{i}(i \in[n])$,

The simplicial complex W_{n}
Vertices: $u, v_{i}, \bar{v}_{i}(i \in[n]), w_{i, j}, \bar{w}_{i, j}(i, j \in[n], i<j)$.

The simplicial complex W_{n}

Vertices: $u, v_{i}, \bar{v}_{i}(i \in[n]), w_{i, j}, \bar{w}_{i, j}(i, j \in[n], i<j)$.
Edges: $\left\{u, v_{i}\right\},\left\{v_{i}, \bar{v}_{i}\right\},\left\{\bar{v}_{i}, u\right\}$.

The simplicial complex W_{n}

Vertices: $u, v_{i}, \bar{v}_{i}(i \in[n]), w_{i, j}, \bar{w}_{i, j}(i, j \in[n], i<j)$.
Edges: $\left\{u, v_{i}\right\},\left\{v_{i}, \bar{v}_{i}\right\},\left\{\bar{v}_{i}, u\right\}$.
Add additional edges and triangles as follows:

W_{n} has $1+2 n+2\binom{n}{2}=n^{2}+n+1$ vertices,

The simplicial complex W_{n}

Vertices: $u, v_{i}, \bar{v}_{i}(i \in[n]), w_{i, j}, \bar{w}_{i, j}(i, j \in[n], i<j)$.
Edges: $\left\{u, v_{i}\right\},\left\{v_{i}, \bar{v}_{i}\right\},\left\{\bar{v}_{i}, u\right\}$.
Add additional edges and triangles as follows:

W_{n} has $1+2 n+2\binom{n}{2}=n^{2}+n+1$ vertices, and $\pi_{1}\left(W_{n}\right) \cong \mathbb{Z}^{n}$.

Upper bound: Identifying vertices in W_{n}

Upper bound: Identifying vertices in W_{n}

Identify vertices $w_{1,2}, w_{3,4}$,

Upper bound: Identifying vertices in W_{n}

Identify vertices $w_{1,2}, w_{3,4}$, identify edges $\left\{u, w_{1,2}\right\},\left\{u, w_{3,4}\right\}$.

Upper bound: Identifying vertices in W_{n}

Identify vertices $w_{1,2}, w_{3,4}$, identify edges $\left\{u, w_{1,2}\right\},\left\{u, w_{3,4}\right\}$.

Upper bound: Identifying vertices in W_{n}

Identify vertices $w_{1,2}, w_{3,4}$, identify edges $\left\{u, w_{1,2}\right\},\left\{u, w_{3,4}\right\}$.

Use the fact that $w_{1,2}, w_{3,4}$ have no common neighbors.

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.
In general, if M is a matching of the complete graph K_{n} on vertex set $[n]$, then we can identify

$$
\left\{w_{i, j}:\{i, j\} \in M\right\}
$$

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.
In general, if M is a matching of the complete graph K_{n} on vertex set $[n]$, then we can identify

$$
\left\{w_{i, j}:\{i, j\} \in M\right\}
$$

A 1-factorization of K_{n} is a partition of the edges of K_{n} into perfect matchings.

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.
In general, if M is a matching of the complete graph K_{n} on vertex set $[n]$, then we can identify

$$
\left\{w_{i, j}:\{i, j\} \in M\right\}
$$

A 1-factorization of K_{n} is a partition of the edges of K_{n} into perfect matchings. (Exists for all n even.)

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.
In general, if M is a matching of the complete graph K_{n} on vertex set $[n]$, then we can identify

$$
\left\{w_{i, j}:\{i, j\} \in M\right\}
$$

A 1-factorization of K_{n} is a partition of the edges of K_{n} into perfect matchings. (Exists for all n even.)

Take a 1-factorization \mathcal{F} of K_{n}, identify the $w_{i, j}$ corresponding to each $M \in \mathcal{F}$.

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.
In general, if M is a matching of the complete graph K_{n} on vertex set $[n]$, then we can identify

$$
\left\{w_{i, j}:\{i, j\} \in M\right\}
$$

A 1-factorization of K_{n} is a partition of the edges of K_{n} into perfect matchings. (Exists for all n even.)

Take a 1-factorization \mathcal{F} of K_{n}, identify the $w_{i, j}$ corresponding to each $M \in \mathcal{F}$.

Take a 1-factorization $\overline{\mathcal{F}}$ of K_{n}, identify the $\bar{w}_{i, j}$ corresponding to each $M \in \overline{\mathcal{F}}$.

Upper bound: Identifying many vertices in W_{n}.

We can similarly identify $w_{1,2}, w_{3,4}, w_{5,6}$ to a single vertex.
In general, if M is a matching of the complete graph K_{n} on vertex set $[n]$, then we can identify

$$
\left\{w_{i, j}:\{i, j\} \in M\right\}
$$

A 1-factorization of K_{n} is a partition of the edges of K_{n} into perfect matchings. (Exists for all n even.)

Take a 1-factorization \mathcal{F} of K_{n}, identify the $w_{i, j}$ corresponding to each $M \in \mathcal{F}$.

Take a 1-factorization $\overline{\mathcal{F}}$ of K_{n}, identify the $\bar{w}_{i, j}$ corresponding to each $M \in \overline{\mathcal{F}}$.

Upper bound: Identifying many vertices in W_{n}.

Any two edges $\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}$ of K_{n} cannot appear together in matchings in both \mathcal{F} and $\overline{\mathcal{F}}$.

Upper bound: Identifying many vertices in W_{n}.

Any two edges $\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}$ of K_{n} cannot appear together in matchings in both \mathcal{F} and $\overline{\mathcal{F}}$.

Such a pair $\mathcal{F}, \overline{\mathcal{F}}$ is said to be orthogonal.

Upper bound: Identifying many vertices in W_{n}.

Any two edges $\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}$ of K_{n} cannot appear together in matchings in both \mathcal{F} and $\overline{\mathcal{F}}$.

Such a pair $\mathcal{F}, \overline{\mathcal{F}}$ is said to be orthogonal.
Theorem (Horton; 1981)
An orthogonal pair of 1-factorizations of K_{n} exists for all $n=2 k, k \neq 2,3$.

Upper bound: Identifying many vertices in W_{n}.

Any two edges $\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}$ of K_{n} cannot appear together in matchings in both \mathcal{F} and $\overline{\mathcal{F}}$.

Such a pair $\mathcal{F}, \overline{\mathcal{F}}$ is said to be orthogonal.
Theorem (Horton; 1981)
An orthogonal pair of 1-factorizations of K_{n} exists for all $n=2 k, k \neq 2,3$.

For $n=2 k, k \neq 2,3$, we obtain X_{n} with $\pi_{1}\left(X_{n}\right)=\mathbb{Z}^{n}$, and X_{n} has $1+4 k+2(2 k-1)=8 k-1$ vertices.

Upper bound: Identifying many vertices in W_{n}.

Any two edges $\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}$ of K_{n} cannot appear together in matchings in both \mathcal{F} and $\overline{\mathcal{F}}$.

Such a pair $\mathcal{F}, \overline{\mathcal{F}}$ is said to be orthogonal.
Theorem (Horton; 1981)
An orthogonal pair of 1-factorizations of K_{n} exists for all $n=2 k, k \neq 2,3$.

For $n=2 k, k \neq 2,3$, we obtain X_{n} with $\pi_{1}\left(X_{n}\right)=\mathbb{Z}^{n}$, and X_{n} has $1+4 k+2(2 k-1)=8 k-1$ vertices.

For $n=2 k-1$, a similar result follows by adding a dummy vertex to K_{n}, and proceeding as in the $n=2 k$ case.

Lower bound: Outline

Connection with group presentations

Lower bound: Outline

Connection with group presentations
$\Omega\left(n^{2 / 3}\right)$ lower bound by deficiency.

Lower bound: Outline

Connection with group presentations
$\Omega\left(n^{2 / 3}\right)$ lower bound by deficiency.
$\Omega\left(n^{3 / 4}\right)$ lower bound by Sylvester-Gallai.

Lower bound: Connection with group presentations

Lemma
If X is a simplicial complex on k vertices with $\pi_{1}(X) \cong G$, then there exists a presentation $\langle S \mid R\rangle \cong G$ with $|S| \leq\binom{ k}{2}$ and $|R| \leq\binom{ k}{3}$.

Lower bound: Connection with group presentations

Lemma
If X is a simplicial complex on k vertices with $\pi_{1}(X) \cong G$, then there exists a presentation $\langle S \mid R\rangle \cong G$ with $|S| \leq\binom{ k}{2}$ and $|R| \leq\binom{ k}{3}$.

Outline.
Consider a spanning tree T of X.

Lower bound: Connection with group presentations

Lemma
If X is a simplicial complex on k vertices with $\pi_{1}(X) \cong G$, then there exists a presentation $\langle S \mid R\rangle \cong G$ with $|S| \leq\binom{ k}{2}$ and $|R| \leq\binom{ k}{3}$.

Outline.
Consider a spanning tree T of X.
Each edge of X not in T corresponds to a generator of $\pi_{1}(X)$.

Lower bound: Connection with group presentations

Lemma

If X is a simplicial complex on k vertices with $\pi_{1}(X) \cong G$, then there exists a presentation $\langle S \mid R\rangle \cong G$ with $|S| \leq\binom{ k}{2}$ and $|R| \leq\binom{ k}{3}$.

Outline.
Consider a spanning tree T of X.
Each edge of X not in T corresponds to a generator of $\pi_{1}(X)$.
Each triangle of X corresponds to a relation of the form $g, g h$, or ghi of $\pi_{1}(X)$.

Lower bound: Connection with group presentations

Lemma

If X is a simplicial complex on k vertices with $\pi_{1}(X) \cong G$, then there exists a presentation $\langle S \mid R\rangle \cong G$ with $|S| \leq\binom{ k}{2}$ and $|R| \leq\binom{ k}{3}$.

Outline.
Consider a spanning tree T of X.
Each edge of X not in T corresponds to a generator of $\pi_{1}(X)$.
Each triangle of X corresponds to a relation of the form $g, g h$, or ghi of $\pi_{1}(X)$. (Each generator may be inverted.)

Lower bound: 3-presentations

A 3-presentation is a group presentation $\langle S \mid R\rangle$ where each relation of R is of one of the following forms:

Lower bound: 3-presentations

A 3-presentation is a group presentation $\langle S \mid R\rangle$ where each relation of R is of one of the following forms:

- \rangle (the empty word)

Lower bound: 3-presentations

A 3-presentation is a group presentation $\langle S \mid R\rangle$ where each relation of R is of one of the following forms:

- \rangle (the empty word)
- $g^{a}(g \in S, a \in \mathbb{Z})$

Lower bound: 3-presentations

A 3-presentation is a group presentation $\langle S \mid R\rangle$ where each relation of R is of one of the following forms:

- \rangle (the empty word)
- $g^{a}(g \in S, a \in \mathbb{Z})$
- $g^{a} h^{b}(g, h \in S, a, b \in \mathbb{Z})$

Lower bound: 3-presentations

A 3-presentation is a group presentation $\langle S \mid R\rangle$ where each relation of R is of one of the following forms:

- \rangle (the empty word)
- $g^{a}(g \in S, a \in \mathbb{Z})$
- $g^{a} h^{b}(g, h \in S, a, b \in \mathbb{Z})$
- $g^{a} h^{b} i^{c}(g, h, i \in S, a, b, c \in \mathbb{Z})$

Lower bound: 3-presentations

A 3-presentation is a group presentation $\langle S \mid R\rangle$ where each relation of R is of one of the following forms:

- \rangle (the empty word)
- $g^{a}(g \in S, a \in \mathbb{Z})$
- $g^{a} h^{b}(g, h \in S, a, b \in \mathbb{Z})$
- $g^{a} h^{b} i^{c}(g, h, i \in S, a, b, c \in \mathbb{Z})$

Lemma

If X is a simplicial complex on k vertices with $\pi_{1}(X) \cong G$, then there exists a 3-presentation $\langle S \mid R\rangle \cong G$ with $|S| \leq\binom{ k}{2}$ and $|R| \leq\binom{ k}{3}$.

Lower bound: Deficiency of group presentations

The deficiency of a group presentation $\langle S \mid R\rangle$ is $|S|-|R|$.

Lower bound: Deficiency of group presentations

The deficiency of a group presentation $\langle S \mid R\rangle$ is $|S|-|R|$.
The deficiency of a group is the maximum deficiency of any of its presentations.

Lower bound: Deficiency of group presentations

The deficiency of a group presentation $\langle S \mid R\rangle$ is $|S|-|R|$.
The deficiency of a group is the maximum deficiency of any of its presentations.

Theorem (Epstein; 1961)

$$
\text { def } G \leq \operatorname{rank} H_{1}(G, \mathbb{Z})-\min \# \text { of generators for } H_{2}(G, \mathbb{Z})
$$

Lower bound: Deficiency of group presentations

The deficiency of a group presentation $\langle S \mid R\rangle$ is $|S|-|R|$.
The deficiency of a group is the maximum deficiency of any of its presentations.

Theorem (Epstein; 1961)

$$
\text { def } G \leq \operatorname{rank} H_{1}(G, \mathbb{Z})-\min \# \text { of generators for } H_{2}(G, \mathbb{Z})
$$

We have def $\mathbb{Z}^{n}=n-\binom{n}{2}$.

Lower bound: Deficiency of group presentations

The deficiency of a group presentation $\langle S \mid R\rangle$ is $|S|-|R|$.
The deficiency of a group is the maximum deficiency of any of its presentations.

Theorem (Epstein; 1961)

$$
\text { def } G \leq \operatorname{rank} H_{1}(G, \mathbb{Z})-\min \# \text { of generators for } H_{2}(G, \mathbb{Z})
$$

We have def $\mathbb{Z}^{n}=n-\binom{n}{2}$.
For example, $\left\langle g_{1}, \ldots, g_{n} \mid g_{i} g_{j} g_{i}^{-1} g_{j}^{-1}, i<j\right\rangle \cong \mathbb{Z}^{n}$.

Lower bound: $\Omega\left(n^{2 / 3}\right)$ by deficiency

Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.

Lower bound: $\Omega\left(n^{2 / 3}\right)$ by deficiency

Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|R| \leq\binom{ k}{3}$.

Lower bound: $\Omega\left(n^{2 / 3}\right)$ by deficiency

Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|R| \leq\binom{ k}{3}$.
But $|R| \geq|R|-|S| \geq\binom{ n}{2}-n$.

Lower bound: $\Omega\left(n^{2 / 3}\right)$ by deficiency

Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|R| \leq\binom{ k}{3}$.
But $|R| \geq|R|-|S| \geq\binom{ n}{2}-n$.
So $\binom{k}{3} \geq\binom{ n}{2}-n$.

Lower bound: $\Omega\left(n^{2 / 3}\right)$ by deficiency

Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|R| \leq\binom{ k}{3}$.
But $|R| \geq|R|-|S| \geq\binom{ n}{2}-n$.
So $\binom{k}{3} \geq\binom{ n}{2}-n$.
So $k=\Omega\left(n^{2 / 3}\right)$.

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

This implies our $\Omega\left(n^{3 / 4}\right)$ bound:

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

This implies our $\Omega\left(n^{3 / 4}\right)$ bound:
Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

This implies our $\Omega\left(n^{3 / 4}\right)$ bound:
Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain a 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|S| \leq\binom{ k}{2}$.

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

This implies our $\Omega\left(n^{3 / 4}\right)$ bound:
Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain a 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|S| \leq\binom{ k}{2}$.
But $|S|=\Omega\left(n^{3 / 2}\right)$.

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

This implies our $\Omega\left(n^{3 / 4}\right)$ bound:
Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain a 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|S| \leq\binom{ k}{2}$.
But $|S|=\Omega\left(n^{3 / 2}\right)$.
So $\binom{k}{2}=\Omega\left(n^{3 / 2}\right)$.

Lower bound: $\Omega\left(n^{3 / 4}\right)$ by Sylvester-Gallai

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

This implies our $\Omega\left(n^{3 / 4}\right)$ bound:
Let X be a simplicial complex on k vertices with $\pi_{1}(X) \cong \mathbb{Z}^{n}$.
Obtain a 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ with $|S| \leq\binom{ k}{2}$.
But $|S|=\Omega\left(n^{3 / 2}\right)$.
So $\binom{k}{2}=\Omega\left(n^{3 / 2}\right)$.
So $k=\Omega\left(n^{3 / 4}\right)$.

Lower bound: Sylvester-Gallai theorems

Theorem (Sylvester, Melchior, Gallai; 1940)
Let S be a set of points in \mathbb{R}^{d}, such that for any distinct
$x, y \in S$, there exists a third point $z \in S$ with x, y, z collinear.

Lower bound: Sylvester-Gallai theorems

Theorem (Sylvester, Melchior, Gallai; 1940)
Let S be a set of points in \mathbb{R}^{d}, such that for any distinct $x, y \in S$, there exists a third point $z \in S$ with x, y, z collinear.

Then all points in S lie on a single line.
Theorem (Dvir, Saraf, Widgerson; 2014)
Let S be a set of n points in \mathbb{R}^{d}, such that for any $x \in S$, for at least $\delta(n-1)$ of the remaining points $y \in S$, there exists a third point $z \in S$ with x, y, z collinear.

Lower bound: Sylvester-Gallai theorems

Theorem (Sylvester, Melchior, Gallai; 1940)
Let S be a set of points in \mathbb{R}^{d}, such that for any distinct
$x, y \in S$, there exists a third point $z \in S$ with x, y, z collinear.
Then all points in S lie on a single line.
Theorem (Dvir, Saraf, Widgerson; 2014)
Let S be a set of n points in \mathbb{R}^{d}, such that for any $x \in S$, for at least $\delta(n-1)$ of the remaining points $y \in S$, there exists a third point $z \in S$ with x, y, z collinear.

Then all points in S lie in an affine subspace of dimension at most $12 / \delta$.

Lower bound: Our Sylvester-Gallai variant

Let $V \subseteq \mathbb{R}^{n}$ be a finite set of points, and let E be a finite set of (not necessarily distinct) triples $\{u, v, w\}$ of distinct points $u, v, w \in V$ lying in a common 2-dimensional subspace of \mathbb{R}^{d}, so that (V, E) forms a 3-uniform hypergraph.

Lower bound: Our Sylvester-Gallai variant

Let $V \subseteq \mathbb{R}^{n}$ be a finite set of points, and let E be a finite set of (not necessarily distinct) triples $\{u, v, w\}$ of distinct points $u, v, w \in V$ lying in a common 2-dimensional subspace of \mathbb{R}^{d}, so that (V, E) forms a 3-uniform hypergraph.

Suppose that for each induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $\operatorname{dim}\left(\right.$ span $\left.V^{\prime}\right) \leq 2$, we have $\left|E^{\prime}\right| \leq\left|V^{\prime}\right|-1$.

Lower bound: Our Sylvester-Gallai variant

Let $V \subseteq \mathbb{R}^{n}$ be a finite set of points, and let E be a finite set of (not necessarily distinct) triples $\{u, v, w\}$ of distinct points $u, v, w \in V$ lying in a common 2-dimensional subspace of \mathbb{R}^{d}, so that (V, E) forms a 3-uniform hypergraph.

Suppose that for each induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $\operatorname{dim}\left(\right.$ span $\left.V^{\prime}\right) \leq 2$, we have $\left|E^{\prime}\right| \leq\left|V^{\prime}\right|-1$.

Then for $\lambda>0$, there exists an induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $|E|-\left|E^{\prime}\right|<\lambda|V|$, and

$$
\operatorname{dim}\left(\text { span } V^{\prime}\right) \leq 12|V| / \lambda
$$

(V corresponds to S,

Lower bound: Our Sylvester-Gallai variant

Let $V \subseteq \mathbb{R}^{n}$ be a finite set of points, and let E be a finite set of (not necessarily distinct) triples $\{u, v, w\}$ of distinct points $u, v, w \in V$ lying in a common 2-dimensional subspace of \mathbb{R}^{d}, so that (V, E) forms a 3-uniform hypergraph.

Suppose that for each induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $\operatorname{dim}\left(\right.$ span $\left.V^{\prime}\right) \leq 2$, we have $\left|E^{\prime}\right| \leq\left|V^{\prime}\right|-1$.

Then for $\lambda>0$, there exists an induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $|E|-\left|E^{\prime}\right|<\lambda|V|$, and

$$
\operatorname{dim}\left(\text { span } V^{\prime}\right) \leq 12|V| / \lambda
$$

(V corresponds to S, E corresponds to R;

Lower bound: Our Sylvester-Gallai variant

Let $V \subseteq \mathbb{R}^{n}$ be a finite set of points, and let E be a finite set of (not necessarily distinct) triples $\{u, v, w\}$ of distinct points $u, v, w \in V$ lying in a common 2-dimensional subspace of \mathbb{R}^{d}, so that (V, E) forms a 3-uniform hypergraph.

Suppose that for each induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $\operatorname{dim}\left(\right.$ span $\left.V^{\prime}\right) \leq 2$, we have $\left|E^{\prime}\right| \leq\left|V^{\prime}\right|-1$.

Then for $\lambda>0$, there exists an induced subhypergraph (V^{\prime}, E^{\prime}) of (V, E) with $|E|-\left|E^{\prime}\right|<\lambda|V|$, and

$$
\operatorname{dim}\left(\text { span } V^{\prime}\right) \leq 12|V| / \lambda
$$

(V corresponds to S, E corresponds to R; take $\lambda=24|S| / n$.)

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Apply Sylvester-Gallai to R to get $S^{\prime} \subseteq S$:

- All but at most $24|S|^{2} / n$ relations in R use only generators in the subset $S^{\prime \prime}$.
- $\operatorname{dim} S^{\prime} \leq n / 2$.

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Apply Sylvester-Gallai to R to get $S^{\prime} \subseteq S$:

- All but at most $24|S|^{2} / n$ relations in R use only generators in the subset S^{\prime}.
- $\operatorname{dim} S^{\prime} \leq n / 2$.

Collapse S^{\prime} to get a presentation of \mathbb{Z}^{k},

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Apply Sylvester-Gallai to R to get $S^{\prime} \subseteq S$:

- All but at most $24|S|^{2} / n$ relations in R use only generators in the subset S^{\prime}.
- $\operatorname{dim} S^{\prime} \leq n / 2$.

Collapse S^{\prime} to get a presentation of \mathbb{Z}^{k}, with at most $24|S|^{2} / n$ relations,

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Apply Sylvester-Gallai to R to get $S^{\prime} \subseteq S$:

- All but at most $24|S|^{2} / n$ relations in R use only generators in the subset S^{\prime}.
- $\operatorname{dim} S^{\prime} \leq n / 2$.

Collapse S^{\prime} to get a presentation of \mathbb{Z}^{k}, with at most $24|S|^{2} / n$ relations, $k \geq n / 2$.

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Apply Sylvester-Gallai to R to get $S^{\prime} \subseteq S$:

- All but at most $24|S|^{2} / n$ relations in R use only generators in the subset S^{\prime}.
- $\operatorname{dim} S^{\prime} \leq n / 2$.

Collapse S^{\prime} to get a presentation of \mathbb{Z}^{k}, with at most $24|S|^{2} / n$ relations, $k \geq n / 2$.
So $24|S|^{2} / n=\Omega\left(n^{2}\right)$.

Lower bound: Proof outline

Claim: Any 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ has $|S|=\Omega\left(n^{3 / 2}\right)$.

Apply Sylvester-Gallai to R to get $S^{\prime} \subseteq S$:

- All but at most $24|S|^{2} / n$ relations in R use only generators in the subset S^{\prime}.
- $\operatorname{dim} S^{\prime} \leq n / 2$.

Collapse S^{\prime} to get a presentation of \mathbb{Z}^{k}, with at most $24|S|^{2} / n$ relations, $k \geq n / 2$.

So $24|S|^{2} / n=\Omega\left(n^{2}\right)$.
So $|S|=\Omega\left(n^{3 / 2}\right)$.

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

Our results

Theorem

We have the following asymptotic results:
(a) There is a simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ on $O(n)$ vertices.
(b) Every simplicial complex X_{n} with $\pi_{1}\left(X_{n}\right) \cong \mathbb{Z}^{n}$ has $\Omega\left(n^{3 / 4}\right)$ vertices.

In (a), the exact number of vertices depends on parity:
For $n=2 k, k \neq 2,3$, the complex X_{n} has $8 k-1$ vertices.
For $n=2 k-1, k \neq 2,3$, the complex X_{n} has $8 k-3$ vertices.

Further research

Can our results be extended from \mathbb{Z}^{n} to $\left(\mathbb{Z}_{k}\right)^{n}$ for fixed k ?

Further research

Can our results be extended from \mathbb{Z}^{n} to $\left(\mathbb{Z}_{k}\right)^{n}$ for fixed k ?

Does a 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ require $|S|=\Omega\left(n^{2}\right)$?

Further research

Can our results be extended from \mathbb{Z}^{n} to $\left(\mathbb{Z}_{k}\right)^{n}$ for fixed k ?

Does a 3-presentation $\langle S \mid R\rangle \cong \mathbb{Z}^{n}$ require $|S|=\Omega\left(n^{2}\right)$?

Does a simplicial complex K with $\pi_{1}(K) \cong \mathbb{Z}^{n}$ require $\Omega(n)$ vertices?

Questions

Questions?

