

Bioinformatics
COMP 342 Spring 2020

Lab 1: Greedy Motif Search

Due: Monday, February 3, 2020 – at the start of class

The purpose of this lab is to work with a partner to learn and implement a greedy algorithm for finding

motifs and compare its run-time and correctness to the branch and bound solution discussed in class.

I have provided starter code for the implementation portion of the lab and a complete implementation

of the Branch and Bound Motif Search (not Median String) discussed in class. The files are in the

Box.com folder – link is on Moodle. The files you’ll need are:

starterCode_greedyMotifSearch.py

greedyInput1.txt

motifInput1.txt

MotifSearch.py

Score.py

SearchTrees.py

In class we discussed calculating a profile for a set of possible motifs (one from each of t DNA

sequences). To change this into a probability rather than a count of the number of times we see each

nucleotide at each position, simply divide each value by t (the number of DNA sequences). We can then

multiply these probabilities together when determining the most probable k-mer. We also discussed

how to calculate the distance score for a set of motifs. In the code provided, the distance score is

calculated as we saw in our notes – it looks a bit different since it is easier to work with rows of a list

instead of columns. Below is an example of how the score, consensus and profile are computed, as well

as how the profile can be used to compute the probability of a particular k-mer.

Score(motifs), Profile(motifs) and Consensus(motifs, k), where k is the length of the

motif, are provided for you in the starter code. Score(motifs) is the total hamming distance, which

means we are trying to minimize the score.

To complete this lab, you and your partner will need to implement the following functions, as specified

in the starter code.

HammingDistance

profile_most_probable_kmer
greedyMotifSearch

I’ve included descriptions of parameters and return values for each of the functions, and pseudocode for

the greedy algorithm. The pseudocode for the greedy algorithm is described below as well.

Before starting to write code, it’s important that you understand what the code should be doing. Do the

following by hand to give you a better idea of how the code should work.

Hamming Distance

Let s1=‘GATTCTCA’ and s2=‘GACGCTGA’, what should HammingDistance(s1, s2) return? ____

Profile Most Probable K-mer

Using the profile given on Page 1 of this lab, compute Pr(TCGTCCATTTCC | Profile).

Using the same profile, compute the most probable 12-mer in the following text: GGTACGGGGATTACCT.

To do this, first, list all possible 12-mers from the text; then compute the probability of each one. Just do

this until you understand how the function should work.

Greedy Motif Search Algorithm

Our proposed greedy motif search algorithm, GreedyMotifSearch, tries each of the k-mers in DNA1 as

the first motif. For a given choice of k-mer Motif1 in DNA1, it then builds a profile matrix Profile for this

lone k-mer, and sets Motif2 equal to the Profile-most probable k-mer in DNA2. It then iterates by

updating Profile as the profile matrix formed from Motif1 and Motif2, and sets Motif3 equal to

the Profile-most probable k-mer in DNA3. In general, after finding i − 1 k-mers Motifs in the first i − 1

strings of DNA, GreedyMotifSearch constructs Profile(Motifs) and selects the Profile-most probable k-

mer from DNAi based on this profile matrix. After obtaining a k-mer from each string to obtain a

collection of Motifs, GreedyMotifSearch tests to see whether Motifs outscores the current best scoring

collection of motifs and then moves Motif1 one symbol over in DNA1, beginning the entire process of

generating Motifs again.

Pseudocode:
GreedyMotifSearch(DNA, k, t)

 BestMotifs ← empty motif list
 BestScore ← t * k
 for each k-mer Motif in the first string from DNA
 Motif1 ← Motif
 for i = 2 to t
 form Profile from motifs Motif1, …, Motifi – 1
 Motifi ← Profile-most probable k-mer in the i-th string in DNA
 Motifs ← (Motif1, …, Motift)
 if Score(Motifs) < BestScore:
 BestMotifs ← Motifs

 BestScore ← Score(Motifs)
 return BestMotifs

Below is the input from greedyInput1.txt and the output you should receive after running your greedy

algorithm successfully.

Sample Input:

3 5

GGCGTTCAGGCA
AAGAATCAGTCA
CAAGGAGTTCGC
CACGTCAATCAC
CAATAATATTCG

Sample Output:

CAG
CAG
CAA
CAA
CAA
Consensus = CAA

Analyzing Greedy Motif Search

Compare the run time of your greedy algorithm to the BranchAndBoundMotifSearch using the file

motifInput1.txt. You’ll just need to run MotifSearch.py and use the motifInput1.txt file. You may want

to start the running of the branch and bound code early, since it takes a little while to complete.

What I need from you:

Please turn in a single lab with both your and your partner’s name on it that includes the following in

your write-up. You may upload your code file to Moodle – no need to print it out.

1. Turn in your completed greedy algorithm code file. (upload to Moodle)

2. Write down the solution for motifInput1.txt from running your greedy algorithm code.

3. Answer the following questions.

a. Did your greedy algorithm find the same solution as the branch and bound motif search

for motifInput1.txt?

b. What is the Big-O run time for the greedy algorithm?

c. What is the greedy heuristic (metric) being used in the greedy algorithm?

d. What is being minimized/maximized in the greedy algorithm?

e. When you run the greedy algorithm code, print out the profile of the final motifs. How

many zero probabilities are there? How could this affect your solution?

f. What are some ideas you have for fixing the problem of zero probabilities in the profile?

